

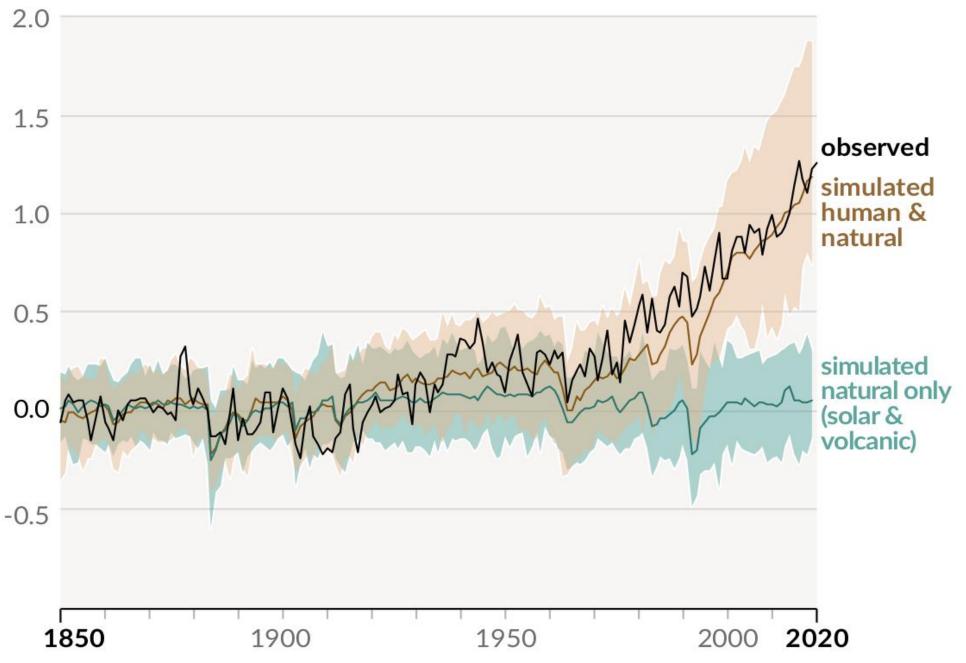
Chaleur, inondation, tempête, sécheresse géotechnique : les effets multiformes du dérèglement climatique sur notre environnement

Hitze, Überschwemmung, Sturm, Dürre: Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen

Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen

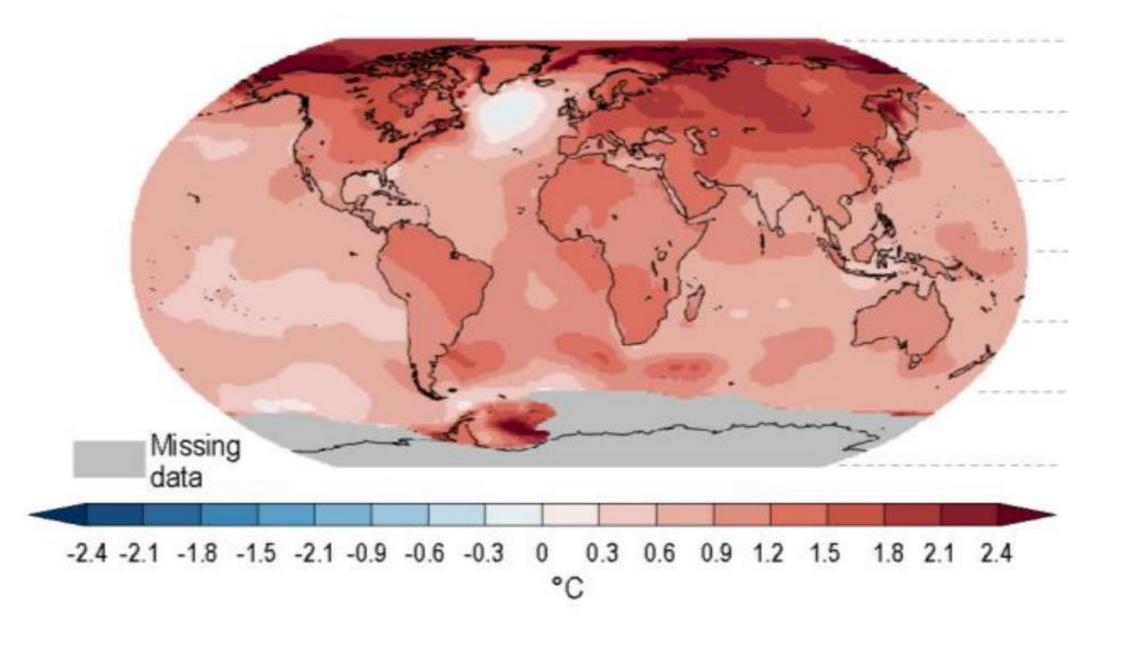
- Au niveau global
- A l'échelle de la France et de l'Alsace
- Focus sur les inondations
- Conclusion
- weltweit
- in Frankreich und im Elsass
- Schwerpunkt Hochwasser und Überschwemmungen
- Zusammenfassung

Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen


- Au niveau global
- A l'échelle de la France et de l'Alsace
- Focus sur les inondations
- Conclusion

weltweit

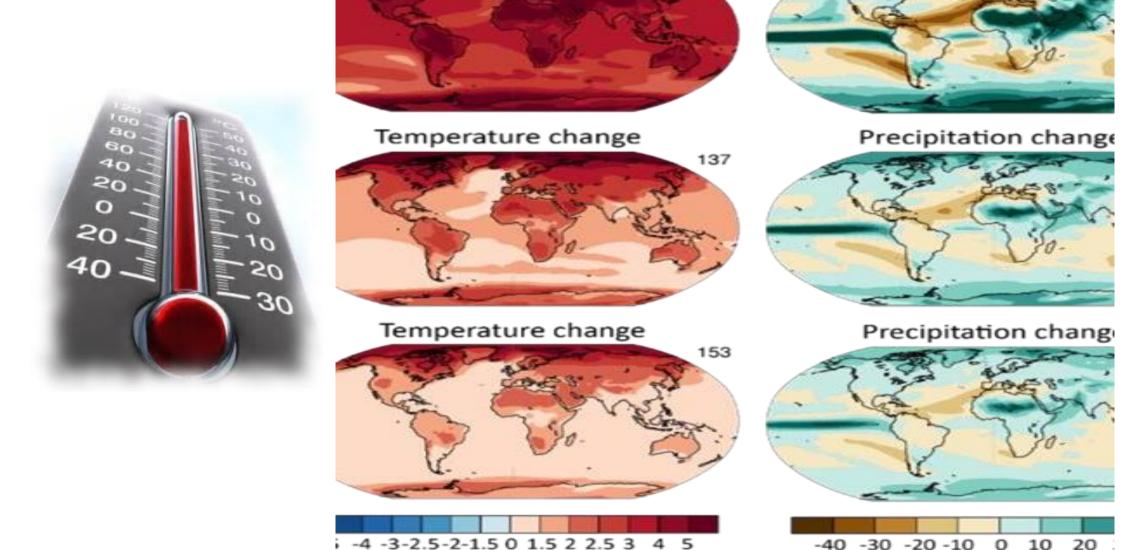
- in Frankreich und im Elsass
- Schwerpunkt Hochwasser und Überschwemmungen
- Zusammenfassung


Ecarts de la température moyenne annuelle globale (°C) par rapport à 1850-2020 : observations et résultats de modèles (GIEC, AR6)

Spanne der globalen Jahresdurchschnittstemperatur (°C) von 1850-2020: Beobachtungen und Ergebnisse der Modellierung (IPCC, AR6)

Changement de température (°C) pour un niveau de réchauffement mondial de 1°C (GIEC, AR6)

Veränderung der Temperatur (°C) bei einer Erderwärmung um 1°C (IPCC, AR6)


niveaux de réchauffement (GIEC AR6, 2021)

Simulation weiterer Veränderungen von Temperatur und Niederschlag bei unterschiedlichen Szenarien für die Erderwärmung (IPCC AR6, 2021)

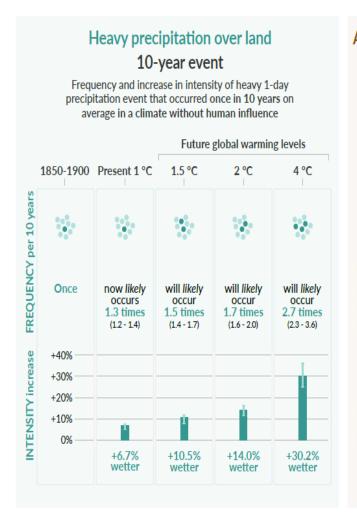
Precipitation change

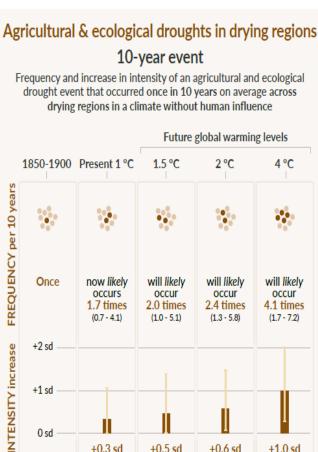
(%)

Temperature change

(°C)

SIXTH ASSESSMENT REPORT





- Un réchauffement observé de 1,1°C par rapport à l'ère préindustrielle
- Un diagnostic sans ambiguïté: concentration CO₂, lien réchauffement climatique entièrement dû aux activités humaines, impacts déjà mesurables: niveau des mers, précipitations aux hautes latitudes, événements extrêmes ...
- Modifications profondes du cycle de l'eau, contrôlées par le contenu maximal en eau de l'atmosphère, la demande évaporative et l'effet direct du CO₂ sur la transpiration des plantes
- Intensité des changements fonction du niveau de réchauffement global atteint
- Nachweis einer Erwärmung um 1,1°C gegen über dem vorindustriellen Zeitalter
- Eine klare Diagnose: Konzentration von CO2, die Klimaerwärmung ist eindeutig auf Aktivitäten des Menschen zurückzuführen, Auswirkungen sind bereits messbar: Anstieg des Meeresspiegels, Niederschläge ganz im Norden und Süden der Erdkugel, Extremwetterereignisse ...
- Tiefgreifende Veränderungen des Wasserkreislaufs, gesteuert durch den maximalen
 Wassergehalt in der Atmosphäre, die Verdunstungsrate und die direkten Auswirkungen des
 CO2 auf die Wasserausscheidung durch Pflanzen
- Wie stark die Veränderungen ausfällen, hängt vom Grad der globalen Erwärmung ab.

- Augmentation des contrastes entre saisons sèches et humides
- La variabilité du cycle de l'eau et les extrêmes vont augmenter plus vite que les changements movens
- Stärkerer Kontrast zwischen trockenen und feuchten Jahreszeiten
- Zunahme von Schwankungen im Wasserkreislaufs und von Wetterextremen schneller als bei mittleren Veränderungen

+0.5 sd

drier

+0.6 sd

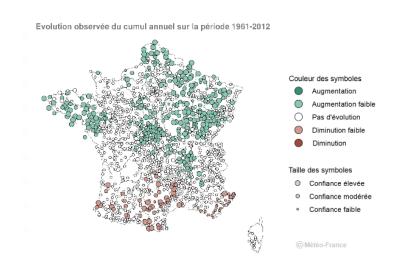
drier

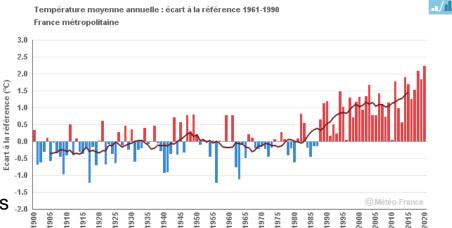
+1.0 sd

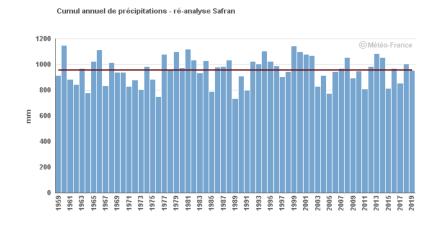
+0.3 sd

drier

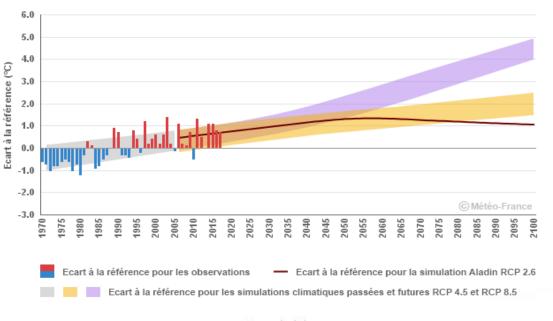
Unterschiedliche Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen

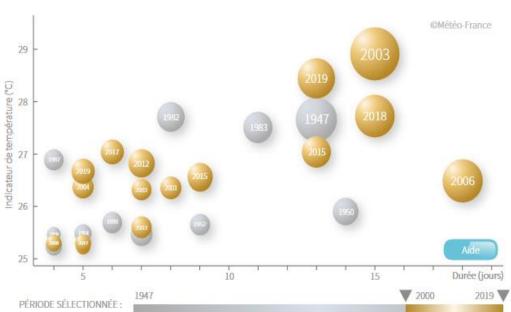

- Au niveau global
- A l'échelle de la France et de l'Alsace
- Focus sur les inondations
- Conclusion
- weltweit
- in Frankreich und im Elsass
- Schwerpunkt Hochwasser und Überschwemmungen
- Zusammenfassung


Le changement climatique, une réalité observée en France Spürbare Auswirkungen des Klimawandels in Frankreich

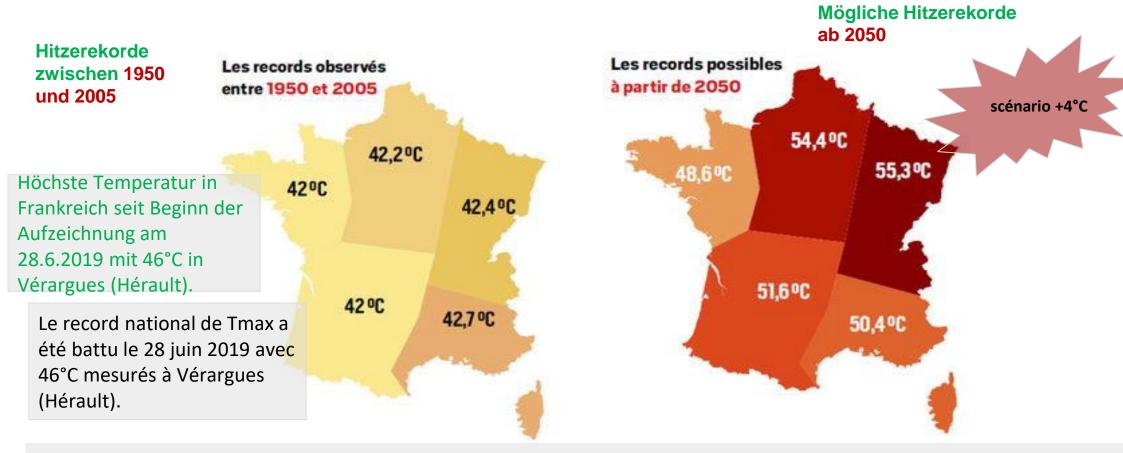

- Evolution des températures : +1,8° C depuis 1900
- Temperaturentwicklung: +1,8°C seit 1900
- Evolution des précipitations
 - Un signal moins clair que pour les températures
 - Une légère augmentation au nord et diminution au sud
 - Des précipitations extrêmes plus intenses et plus fréquentes sur le pourtour méditerranéen

- Trend weniger deutlich ausgeprägt als bei Temperaturentwicklung
- Ein leichter Anstieg im Norden und ein Rückgang der Niederschlagsmenge im Süden
- Mehr und stärkere extreme Niederschläge im Mittelmeerraum



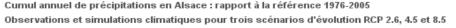

Températures en hausse et vagues de chaleur plus intenses Steigende Temperaturen und intensivere Hitzewellen

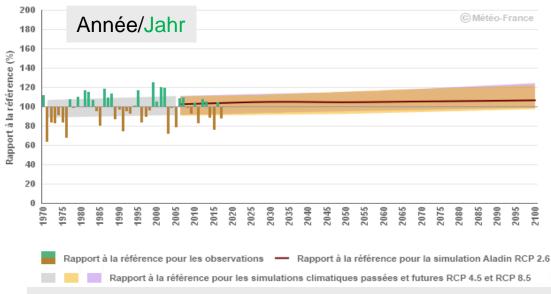
Température moyenne annuelle en Midi-Pyrénées : écart à la référence 1976-2005 Observations et simulations climatiques pour trois scénarios d'évolution RCP 2.6, 4.5 et 8.5


- Vagues de chaleur observées plus fréquentes (+2 j/dec) depuis les années 1980
- D'ici 2050 : poursuite de la hausse de +1 à +2°C
- Multiplication et intensification des vagues de chaleur

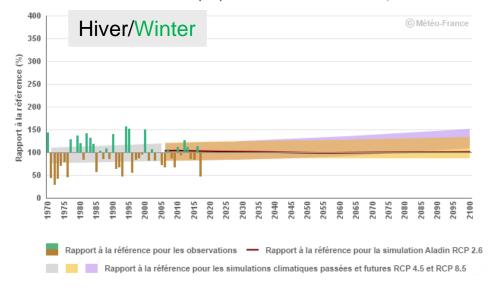
- Häufigere Feststellung von Hitzewellen (+2Tage/10 Jahre) seit den 1980er Jahren
- Bis 2050: Fortsetzung des Anstiegs um +1 bis+2°C
- Mehr und intensivere Hitzewellen

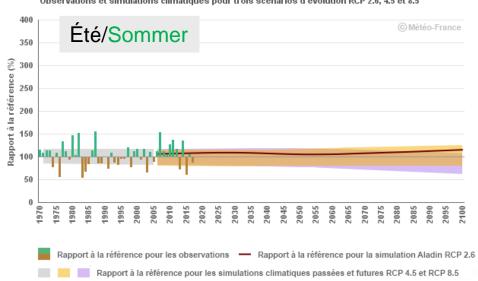
• Quelles températures quotidiennes l'été en France à la fin du XXIe siècle ? Mit welchen Temperaturen ist in Frankreich bis Ende des 21. Jahrhunderts zu rechnen?




- En scénario pessimiste, la hausse des températures en moyenne annuelle sera de l'ordre de +4°C.
- Cette valeur cache des valeurs de records l'été (températures quotidiennes) de l'ordre de 55°C.
- L'impact des vagues de chaleur est très fort sur la santé et l'activité humaines, avec des températures qui restent très élevées la nuit, mais aussi sur les écosystèmes.
- Im pessimistischen Szenario dürfte die Durchschnittstemperatur um +4°C steigen.
- Dieser Wert zeigt sich Hitzerekorde im Sommer (Tagestemperaturen) von 55°C.
- Die Hitzewellen haben bereits starke Auswirkungen auf die Gesundheit und Aktivitäten der Menschen, wenn es nachts keine Abkühlung gibt, und auch auf die Ökosysteme.

Evolution des précipitations en moyenne en Alsace Climat Durchschnittliche Niederschlagsentwicklung im Elsass

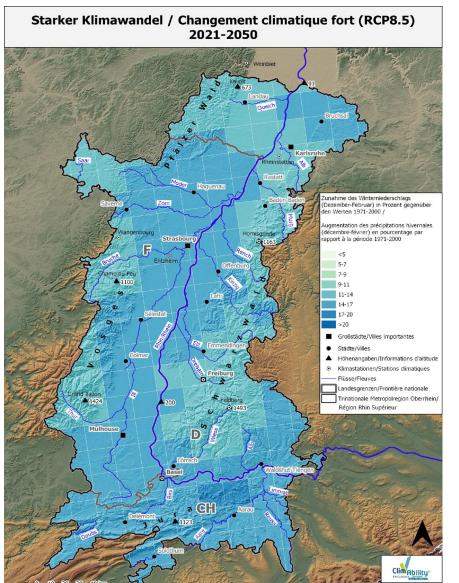


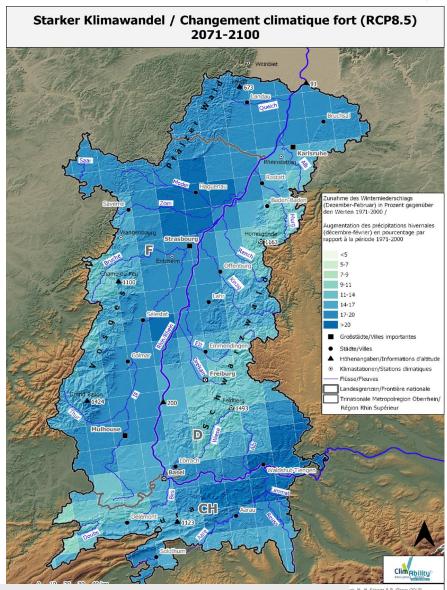

- Une légère augmentation des précipitations en moyenne annuelle
- Une répartition saisonnière inégale : une augmentation des précipitations l'hiver et une diminution l'été
- Des étés plus secs en moyenne
- Ein leichter Anstieg der Niederschlagsmenge im Jahresdurchschnitt
- Eine ungleiche Verteilung auf die Jahreszeiten:
 Mehr Niederschläge im Winter und weniger Niederschläge im Sommer
- Im Durchschnitt trockenere Sommer

Cumul hivernal de précipitations en Alsace : rapport à la référence 1976-2005

Observations et simulations climatiques pour trois scénarios d'évolution RCP 2.6, 4.5 et 8.5

Cumul estival de précipitations en Alsace : rapport à la référence 1976-2005 Observations et simulations climatiques pour trois scénarios d'évolution RCP 2.6, 4.5 et 8.5

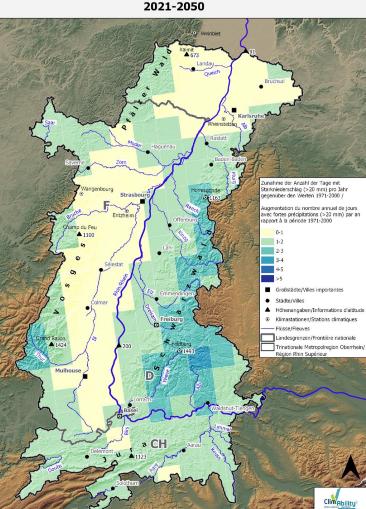


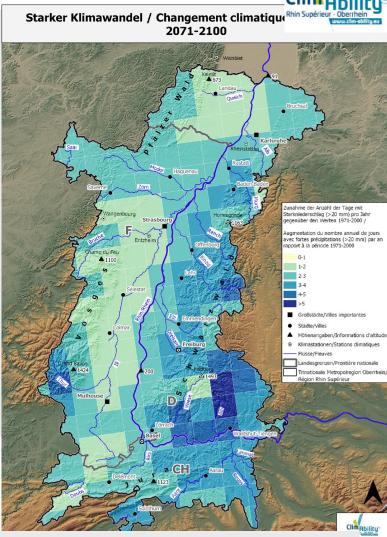


L'augmentation des précipitations hivernales Höhere Niederschläge im Winter

En scénario pessimiste, les **précipitations hivernales vont augmenter de 5 à 20%** dans le Rhin supérieur.

Im pessimistischen Szenario nimmt die Niederschlagsmenge im Winter am Oberrhein zwischen 5 und 20% zu.


ch, N., N. Scholze & R. Glaser (2019)



Augmentation des précipitations intenses (supérieures à 20mm/jour) Zunahme der Starkregenereignisse (Niederschlagsmenge >

- Un air plus chaud de 1°C peut contenir environ 7% de plus de vapeur d'eau en plus (loi de Clausius-Clapeyron), nos prévisionnistes observent déjà que les masses d'air sont plus chaudes et plus humides dans les basses couches
- Des épisodes de précipitations plus intenses seront plus fréquents (orages, grêle)
- Le risque de précipitations intenses va croître particulièrement dans les zones montagneuses

- Bei Erhöhung der Lufttemperatur um 1°C kann die Luft rund 7% mehr Wasserdampf enthalten (Clausius-Clapeyron-Gleichung) können Meteorologen schon jetzt feststellen, dass die Luftmassen wärmer und feuchter sind als tiefere Schichten.
- Es treten häufiger stärkere Niederschläge auf (Gewitter, Hagel).
- Das Risiko von Starkregen wird vor allem in Bergregionen weiter zunehmen.

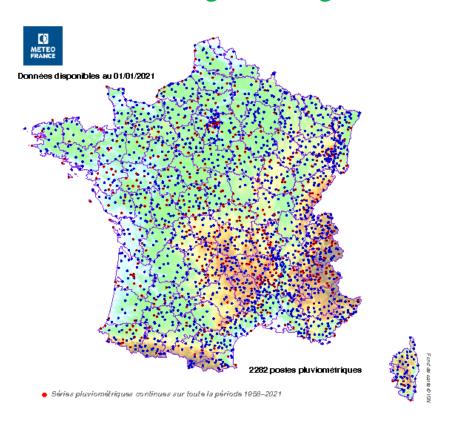
Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen

- Au niveau global
- A l'échelle de la France et de l'Alsace
- Focus sur les inondations
- Conclusion
- weltweit
- in Frankreich und im Elsass
- Schwerpunkt Hochwasser und Überschwemmungen
- Zusammenfassung

Différents types d'inondations verschiedene Arten von Überschwemmungen

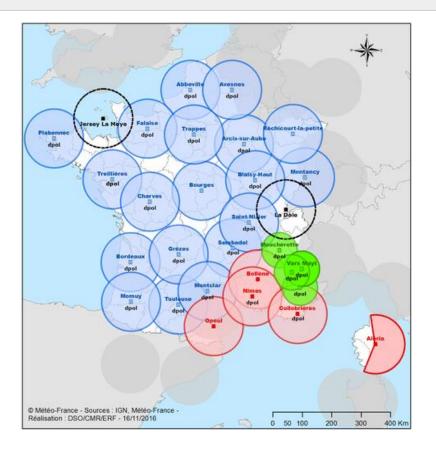
- inondations par fortes précipitations
 - les sols sont saturés et n'absorbent plus l'eau de pluie (par exemple, lors d'un hiver très pluvieux, ou d'un orage violent sur sol très humide)
 - les sols sont très secs et n'absorbent pas l'eau de pluie (orages violents sur sol secs) : fort ruissellement
- crues (débordement des cours d'eau, causes possibles : forts cumuls de précipitations ou fonte nivale ou les deux)
- remontées de nappe phréatique (souvent en hiver, suite à des précipitations fréquentes et abondantes, la nappe pleine remonte en surface)
- une combinaison de plusieurs facteurs (par exemple, crues et inondations)
- Conséquences possibles des inondations : coulées de boue, glissements de terrain

- Überschwemmungen durch Starkregenereignisse
 - Die Böden sind gesättigt und nehmen kein Regenwasser mehr auf (z.B. bei einem regenreichen Winter oder einem heftigen Gewitter auf feuchtem Untergrund)
 - Die Böden sind sehr trocken und nehmen kein Regenwasser mehr auf (heftige Gewitter auf trockenem Untergrund): Abfluss der Niederschläge
- Hochwasser (Wasserläufe treten über die Ufer, mögliche Ursachen: mehrere Starkregenereignisse oder Schneeschmelze oder beides)
- Anstieg des Grundwasserspiegels (oft im Winter nach häufigen ergiebigen Niederschlägen steigt das Grundwasser an die Oberfläche)
- Eine Kombination aus verschiedenen Faktoren (zum Beispiel Hochwasser und Überschwemmungen)
- Mögliche Folgen der Überschwemmungen: Schlammfluten, Erdrutsche


Les facteurs favorisant les inondations Faktoren, die zu Überschwemmungen führen

- De nombreux facteurs entrent en ligne de compte :
 - les précipitations
 - les pratiques agricoles : présence ou non de haies, sol pauvre ou riche en matières organiques (plus absorbant)...
 - les **pratiques forestières** : déforestation
 - l'imperméabilisation des sols (l'urbanisation, mais aussi le réseau routier, ou les zones péri-urbaines avec des centres commerciaux ou d'activité, etc.)
- Verschiedene Faktoren spielen eine Rolle:
 - Niederschläge
 - Praktiken der Landwirtschaft: Anpflanzung oder Rodung von Hecken am Feldrand, karge Böden oder gute Humusschicht (kann mehr Wasser aufnehmen)...
 - Forstwirtschaft: Abholzung
 - Versiegelung der Böden (Urbanisierung, aber auch das Straßennetz oder städtische Randgebiete mit Einkaufszentren oder Gewerbegebieten u.ä.)

Les outils de Météo France – Die Tools von Météo France L'observation météorologique – Wetterbeobachtung


Un réseau pluviométrique dense

Ein engmaschiges Netz zur Niederschlagsmessung

Une couverture de radars

Abdeckung des Gebiets mit Radaranlagen

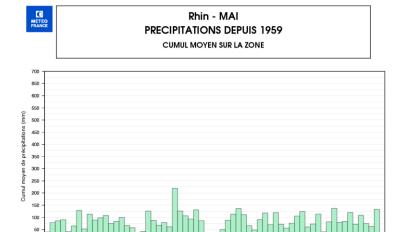
Les outils de Météo France : la climatologie Die Tools von Météo France : Klimaforschung

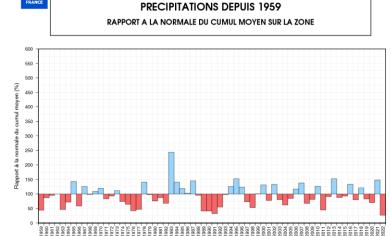
Webseite für Starkregenereignisse

Le site des pluies extrêmes :

http://pluiesextremes.meteo.fr/

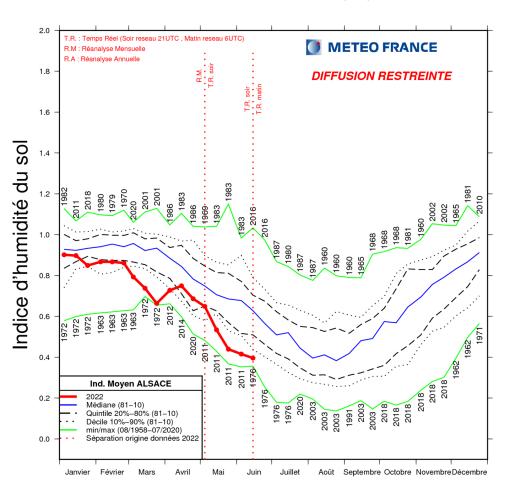
Analyse et veille hydroclimatique


Exemple: surveillance des bassins versants


Karte für die Häufigkeit eines Starkregenereignisses mit Niederschlägen > 80mm in 24h Carte de fréquence d'apparition d'un événement où les précipitations sont supérieures à 80mm en 24h

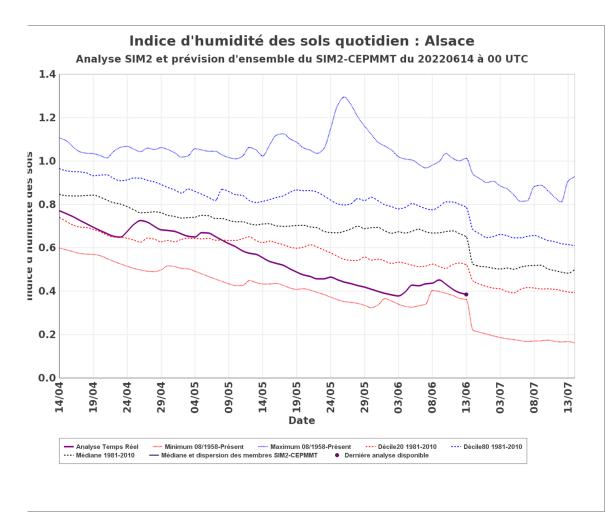
Analyse und Kontrolle hydroklimatischer Daten

Beispiel: Überwachung von Wassereinzugsgebieten



Rhin - MAI

Les outils de Météo France : le suivi d'indicateurs Die Tools von Météo France: Kontrolle von Indikatoren


Le SWI, Soil Wetness Index

Année 2022 – Données de SWI décadaire jusqu'au 20220613

Tages-Index für den Feuchtigkeitsgehalt der Böden im Elsass Analyse SIM2 und Vorhersagen mit allen SIM2-

Analyse SIM2 und Vorhersagen mit allen SIM2-CEPMMT-Daten vom 14.6.22

Auswirkungen des Klimawandels auf unsere Umwelt in unterschiedlichen Erscheinungsformen

- Au niveau global
- A l'échelle de la France et de l'Alsace
- Focus sur les inondations
- Conclusion
- weltweit
- in Frankreich und im Elsass
- Schwerpunkt Hochwasser und Überschwemmungen
- Zusammenfassung

Zusammenfassung

- Le changement climatique s'accompagne d'un réchauffement de l'atmosphère, et de modifications profondes du cycle de l'eau
- En moyenne, la quantité annuelle de précipitations sera peu modifiée
- La répartition saisonnière des précipitations sera différente, avec des hivers plus humides et des étés plus secs
- Der Klimawandel geht mit einer Erwärmung der Atmosphäre einher und führt zu tiefgreifenden Veränderungen des Wasserkreislaufs.
- Im Durchschnitt verändert sich die jährliche Niederschlagsmenge nur geringfügig.
- Die Verteilung der Niederschläge auf die Jahreszeiten verändert sich. Die Winter werden feuchter und die Sommer trockener.

Conclusion Zusammenfassung

- La distribution des précipitations va se modifier, avec moins d'épisodes précipitants faibles à modérés (pluies efficaces), et plus d'épisodes forts
- Il y a une forte variabilité interne au climat : des phénomènes peuvent se démarquer des moyennes, ce qui ne les invalide pas ! Exemple : première quinzaine de juillet 2021, avec une goutte froide bloquée sur le sud-ouest de l'Allemagne...
- Die Verteilung der Niederschläge wird sich ändern. Es wird weniger Phasen mit geringen oder mäßigen Niederschlägen (effizienter Regen) geben und mehr Starkregenereignissen.
- Es gibt eine starke interne Varianz beim Klima: Einzelne Ereignisse können sich von den Durchschnittswerten abheben, aber diese nicht außer Kraft setzen! Beispiel: Erste Julihäfte 2021 mit einem kalten Tiefdruckgebiet, das stabil über Südwestdeutschland stand...

Quelles politiques de réduction des émissions de gaz à effet de serre ? Rapport spécial « 1,5°C » du GIEC, 2018 Welche Maßnahmen sollte die Politik zur Senkung der CO2-Emissionen treffen? Sonderbericht « 1,5°C » des IPCC 2018 Non-CO₂ emissions relative to 2010 Global total net CO2 emissions **Emissions non-CO₂** Emissions mondiales totales de CO₂ (milliards (base: 2010) de tonnes de CO₂ par an) Méthane Pour limiter le réchauffement planétaire à 1,5°C, les 40 émissions nettes de CO₂ doivent être nulles vers 2050. Zur Eindämmung der Erderwärmung auf 1,5°C darf ab 2050 kein CO2 mehr emittiert werden. 30 0 2020 2040 2060 2080 2100 20 Suies 10 Four illustrative model pathways 0 0 2020 2040 2060 2080 2100 P1 P2 Oxyde nitreux -10 **P3** -20 P4 0 2020 2040 2060 2080 2100 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100 Timing of net zero CO₂ Pathways limiting global warming to 1.5°C with no or low overshoot Line widths depict the 5-95th Pathways with high overshoot percentile and the 25-75th Pathways limiting global warming below 2°C percentile of scenarios (Not shown above)