

ÉNERGIE? CARBONE? CONFORT D'ÉTÉ?

QUELLE SERA LA MÉTHODE D'ÉVALUATION?

- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

ÉNERGIE?

QUELLE SERA LA MÉTHODE D'ÉVALUATION?

- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations

OBJECTIFS

- Sobriété énergétique
- Énergie moins carbonée
- Systématiser la chaleur renouvelable

OBJECTIFS

■ Sobriété énergétique

Bbio - 30 %

■ Énergie moins carbonée

Impact carbone des énergies (Ic)

Maison individuel

Logement collectif

en 2022 en 2025

- Systématiser la chaleur renouvelable
 - Sortir du

GAZ

Logement collectif

En 2022

Maison individuelle

En 2025

Effet Joule

En 2022

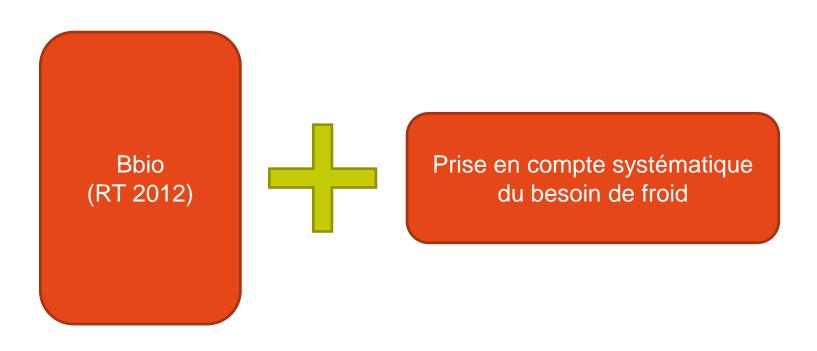
29/04/2021

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations

MÉTHODES ET INDICATEURS

4 indicateurs:


Bbio	Besoins bioclimatiques (points)	
Сер	Consommations d'énergie primaire (kWh _{ep} /(m².an))	
Cep,nr	Consommations d'énergie primaire non renouvelable (kWh _{ep} /(m ₂ .an))	NOUVEAU
Ic énergie	Impact sur le changement climatique associé aux consommations d'énergie primaire	NOUVEAU

énergie

BBIO

CEP

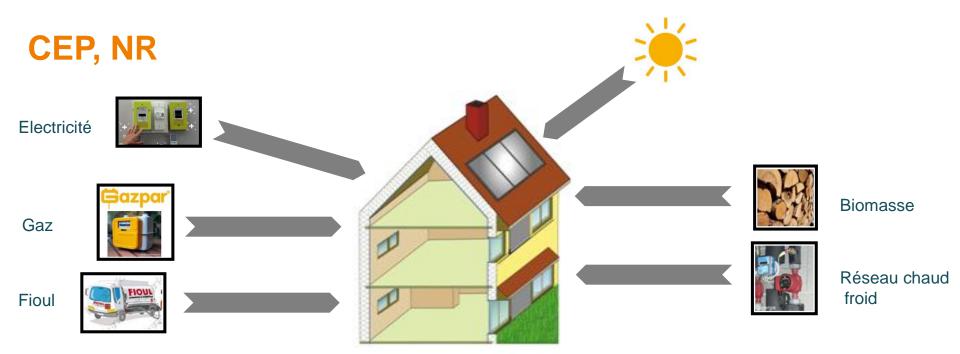
RT 2012

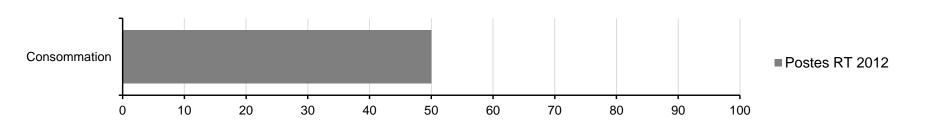
5 usages réglementaires

- · Chauffage,
- refroidissement,
 - éclairage,
 - ECS,
 - Auxiliaires
 (pompes et ventilateurs)

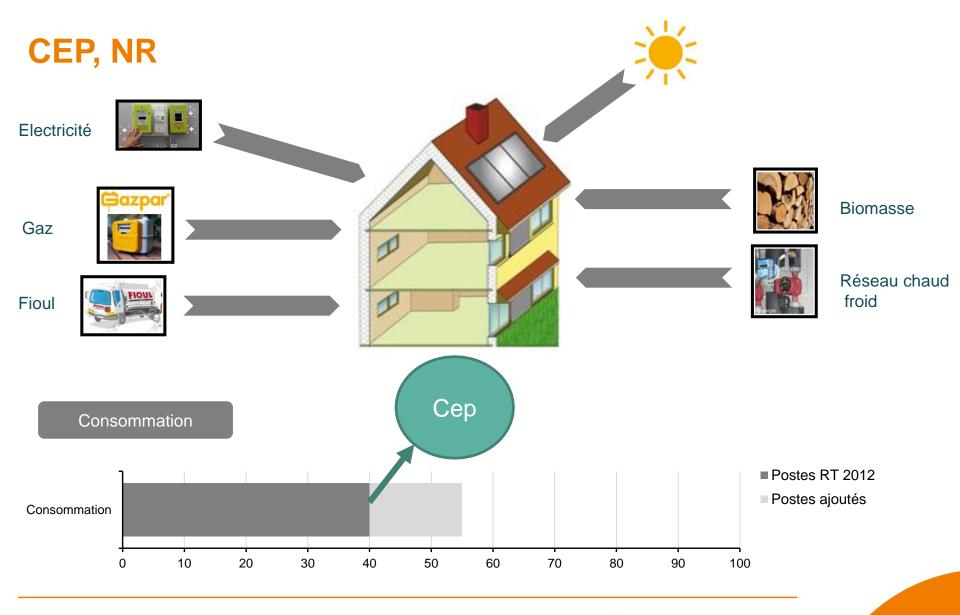
✓ déplacements à l'intérieur (ascenseurs....)

✓ Parking (ventilation, éclairage...)

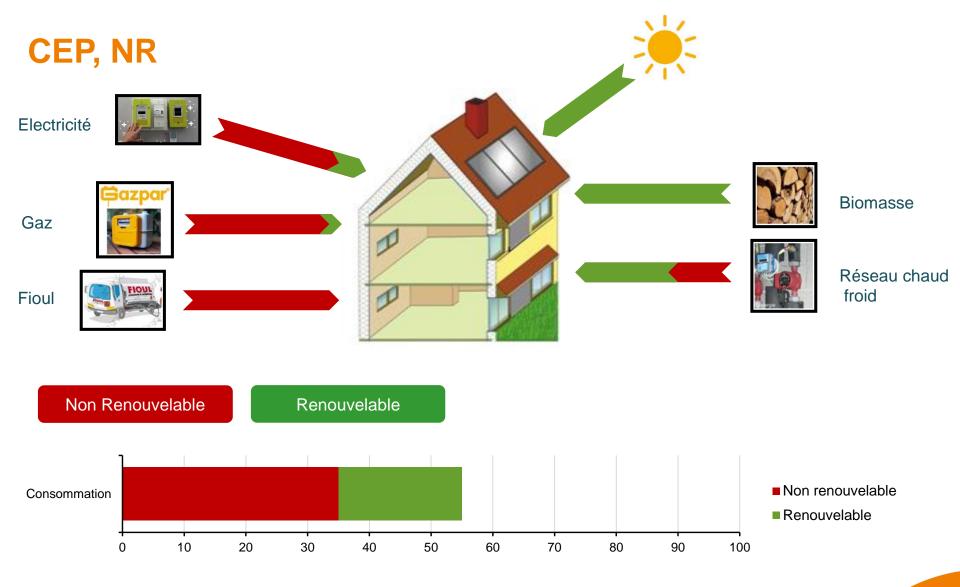

√ Éclairage des communs (LC)



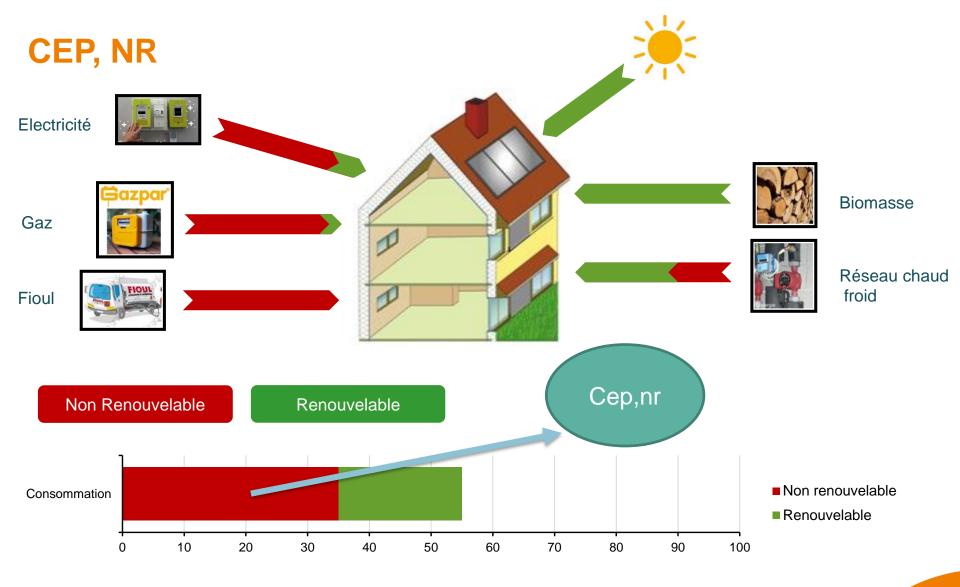
Consommation



29/04/2021

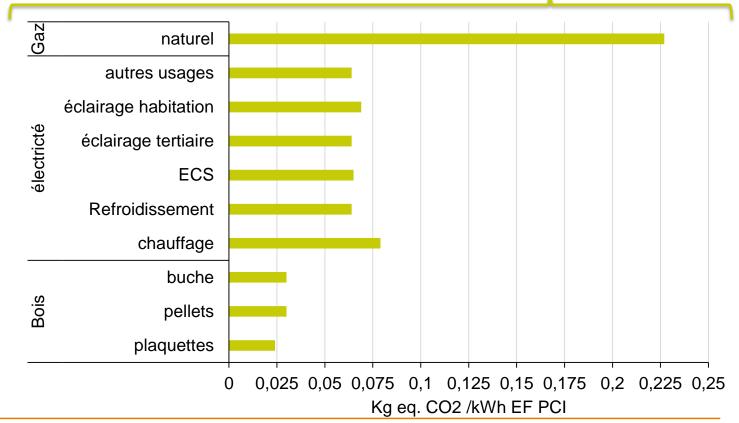


29/04/2021

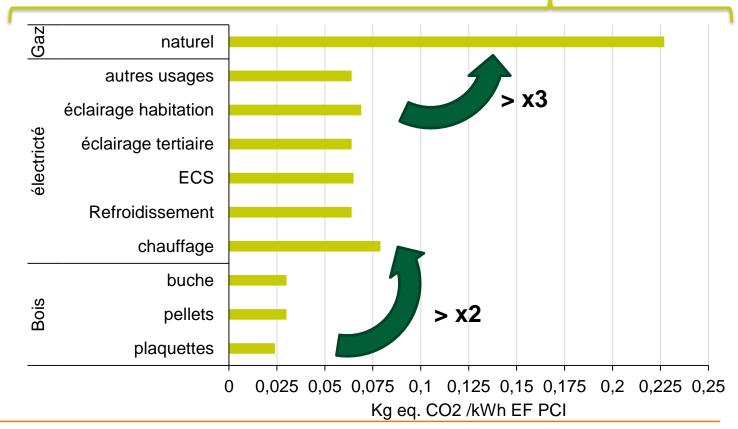


29/04/2021

IC ÉNERGIE



IC ÉNERGIE


29/04/2021

IC ÉNERGIE

29/04/2021

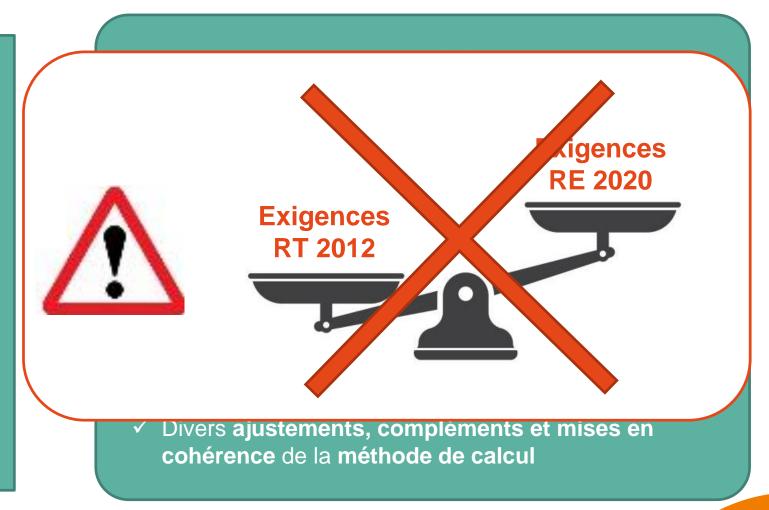
ÉVOLUTION MÉTHODOLOGIQUE AVEC LA RT2012

RT 2012

Les cinq usages réglementaires

La méthode de calcul
Similaire à la
RT2012

- ✓ Une nouvelle surface de référence :
 la SHAB pour le résidentiel et la SU pour le tertiaire
- ✓ Une prise en compte systématique des besoins de refroidissement
- Une pénalisation forfaitaire des consommations de refroidissement
- ✓ Ajout de postes de consommation
- ✓ Des scénarios météorologiques mis à jour
- ✓ Une évolution de la prise en compte de la production d'électricité (photovoltaïque, ...)
- ✓ Divers ajustements, compléments et mises en cohérence de la méthode de calcul



ÉVOLUTION MÉTHODOLOGIQUE AVEC LA RT2012

RT 2012

Les cinq usages réglementaires

La méthode de calcul Similaire à la RT2012

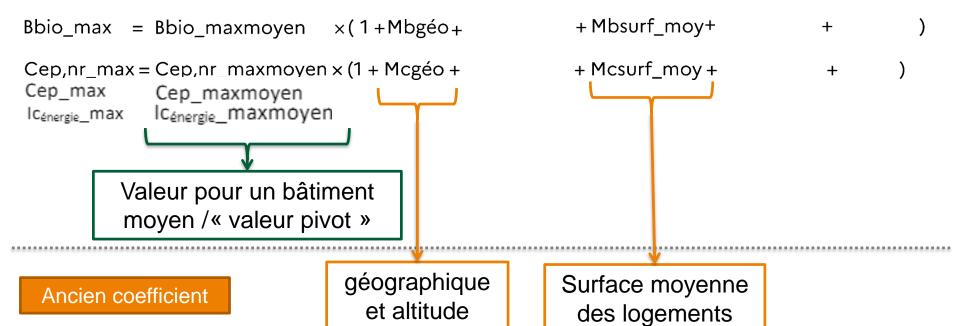
PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations

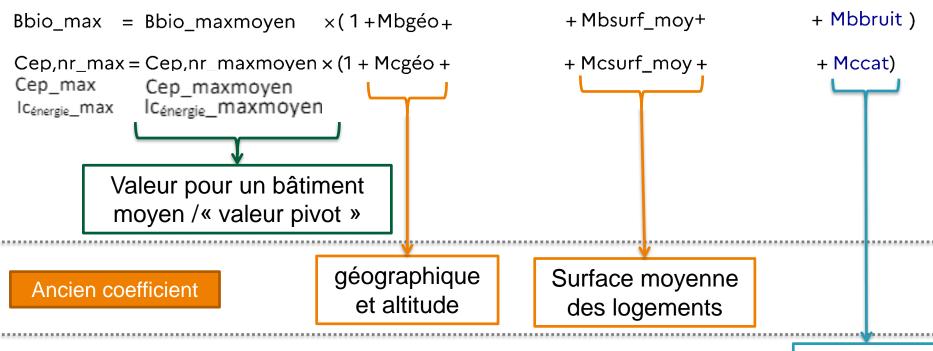
Bbio_max

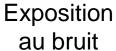
Cep,nr_max Cep_max Ic_{énergie}_max

=> Modulation Identique pour les 4 indicateurs « énergie »



énergie





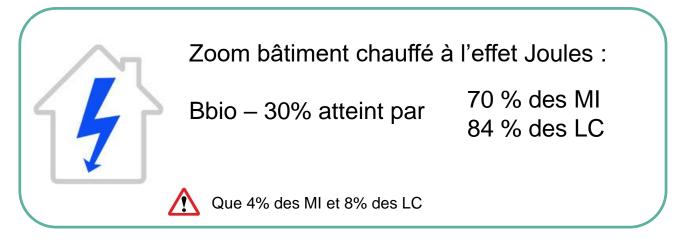
énergie

Modification coefficient

= Bbio_maxmoyen x(1+Mbgéo+Mbcombles+Mbsurf_moy+Mbsurf_tot+Mbbruit) Bbio max Cep,nr_max = Cep,nr_maxmoyen x (1 + Mcgéo + Mccombles + Mcsurf_moy + Mcsurf_tot + Mccat) Cep max Cep maxmoyen Icénergie_maxmoyen Icénergie_max Valeur pour un bâtiment moyen /« valeur pivot » géographique Surface moyenne Ancien coefficient et altitude des logements **Exposition** Modification coefficient au bruit Surface de Présence de Nouveau coefficient combles aménagés référence

29/04/2021

Bbio – Analyses de l'observatoire de la performance énergétique (RT2012) :


Gain Bbio	MI	LC
<-40 %	4%	14%
-40 %30 %	7%	16%
-30 %20 %	17%	22%
-20 %10 %	29%	24%
-10 %-0 %	43%	24%

Bbio – Analyses de l'observatoire de la performance énergétique (RT2012) :

Gain Bbio	MI	LC	
<-40 %	4%	14%	< - 30 %
-40 %30 %	7%	16%	C - 30 76
-30 %20 %	17%	22%	
-20 %10 %	29%	24%	
-10 %-0 %	43%	24%	

29/04/2021

Bbio – Analyses de l'observatoire de la performance énergétique (RT2012) :

Gain Bbio	MI	LC	
<-40 %	4%	14%	< - 30 %
-40 %30 %	7%	16%	C - 30 /6
-30 %20 %	17%	22%	
-20 %10 %	29%	24%	
-10 %-0 %	43%	24%	

Objectif Bbio: -30%

atteignable et ambitieux vis-à-vis des exigences actuelles

	Bbio_maxmoyen
Maisons individuelles ou accolées	63 points
Logements collectifs	65 points

Objectif Bbio: -30%

atteignable et ambitieux vis-à-vis des exigences actuelle

EXIGENCE - CEP

<u>Cep – Analyses de l'observatoire de la performance énergétique (RT2012) :</u>

Gain Cep	MI	LC
<-40 %	1%	2%
-40 %30 %	4%	5%
-30 %20 %	16%	16%
-20 %10 %	29%	34%
-10 %-0 %	49%	43%

énergie

EXIGENCE - CEP

<u>Cep – Analyses de l'observatoire de la performance énergétique (RT2012) :</u>

Gain Cep	MI	LC
<-40 %	1%	2%
-40 %30 %	4%	5%
-30 %20 %	16%	16%
-20 %10 %	29%	34%
-10 %-0 %	49%	43%

Objectif Cep: aucun

Car Cep semble l'exigence du moment

EXIGENCE – Cep_nr – lc énergie

<u>Energie de chauffage par destination d'usage – Analyse de l'observatoire de la performance énergétique (RT2012) :</u>

	MI	LC
Gaz naturel	21%	74%
Electricité Thermodynamique	57%	6%
Electricité Joule	4%	8%
Bois	17%	1%
Réseau de fourniture	0%	9%

EXIGENCE – Cep_nr – lc énergie

<u>Energie de chauffage par destination d'usage – Analyse de l'observatoire de la performance énergétique (RT2012) :</u>

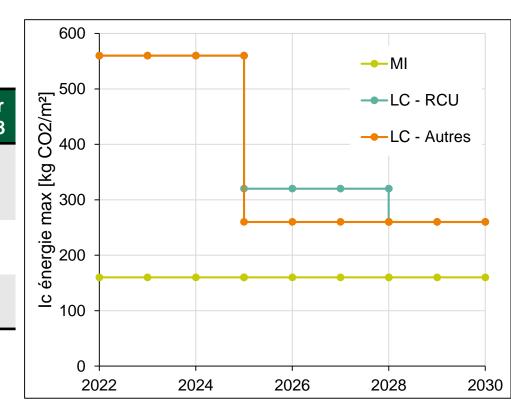
	MI	LC
Gaz naturel	21%	74%
Electricité Thermodynamique	57%	6%
Electricité Joule	4%	8%
Bois	17%	1%
Réseau de fourniture	0%	9%

Objectif:

MI: Sortir du gaz en 2022

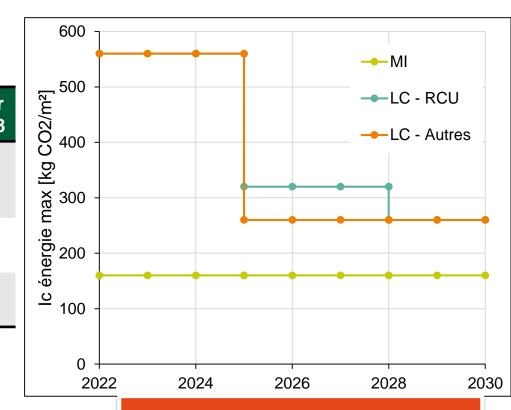
LC: Sortir du gaz en 2025

EXIGENCE – Cep_nr


	Cep,nr_maxmoy en	Cep_maxmoyen
Maisons individuelles ou accolées	55 kWhep/(m².an)	75 kWhep/(m².an)
Logements collectifs	70 kWhep/(m².an)	85 kWhep/(m².an)

EXIGENCE –lc énergie

Kg eq. CO2/m²	2022 à 2024	2025 à 2027	À partir de 2028
Maisons individuelles ou accolées	160	160	160
Logements collectifs – RCU	560	320	260
Logements collectifs – Autres	560	260	260



EXIGENCE –lc énergie

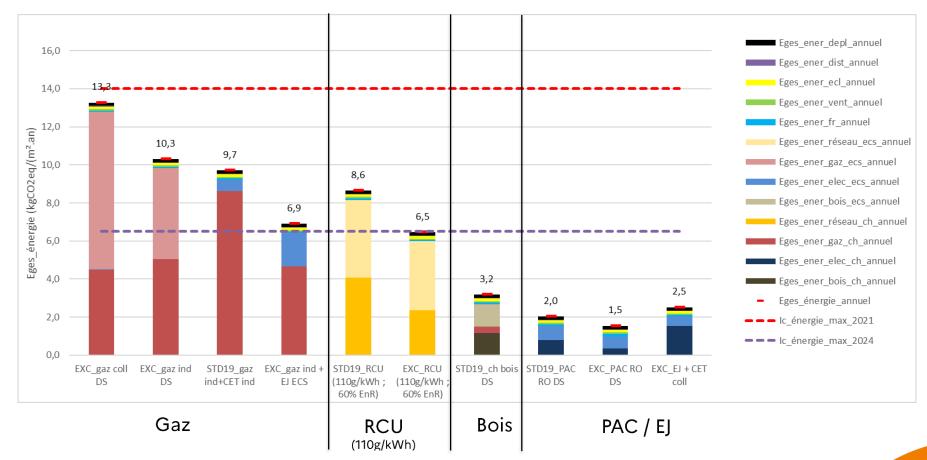
Kg eq. CO2/m²	2022 à 2024	2025 à 2027	À partir de 2028
Maisons individuelles ou accolées	160	160	160
Logements collectifs – RCU	560	320	260
Logements collectifs – Autres	560	260	260

Se tourner vers:

- RCU à faible empreinte
- **PACs**
- Chauffage au bois

29/04/2021

Évolutivité de l'exigence pour permettre aux filières de s'adapter



EXIGENCE –lc énergie

Modulation Système énergétiques (logement collectif)

QUESTIONS?

CARBONE?

QUELLE SERA LA MÉTHODE D'ÉVALUATION?

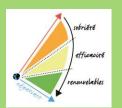
- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations
- 4. Points spécifiques

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations
- 4. Points spécifiques



carbone

OBJECTIFS

Décarboner la construction

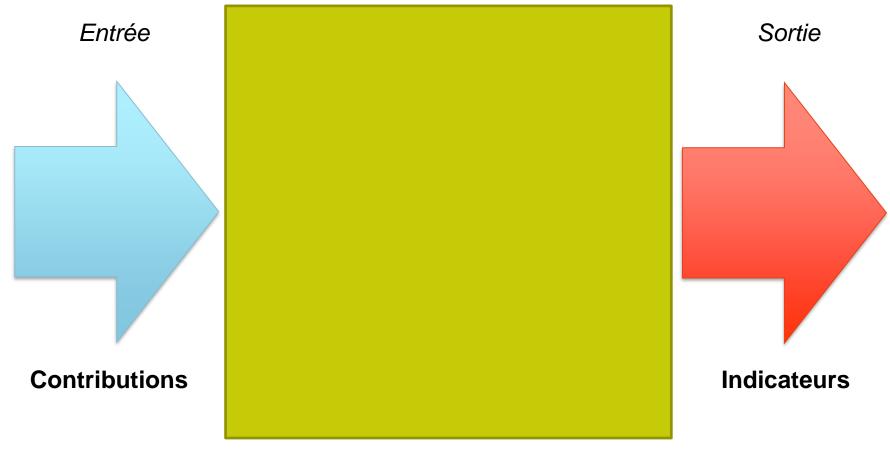
- Réduire les quantités de matériaux
- Décarbonatation des matériaux
- Matériaux à stockage carbone, recyclés, réemployés

Décarboner les énergies

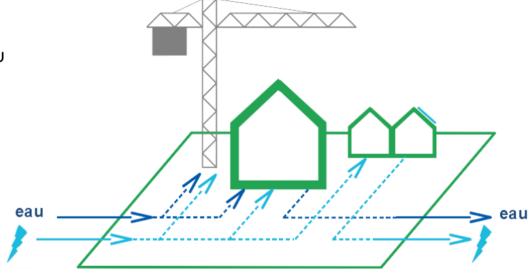
S'inscrire dans le SNBC de 2030 :

- 35% d'émission en 2031 par rapport à la situation actuelle

PLAN


- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations
- 4. Points spécifiques

LA MÉTHODE : L'ANALYSE DU CYCLE DE VIE



LE PÉRIMÈTRE

Périmètre de l'évaluation

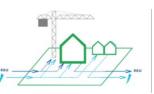
- ➤ Bâtiment et sa parcelle
- > Chantier de construction
- ➤ Consommations d'énergie et d'eau

LES CONTRIBUTIONS

Composant

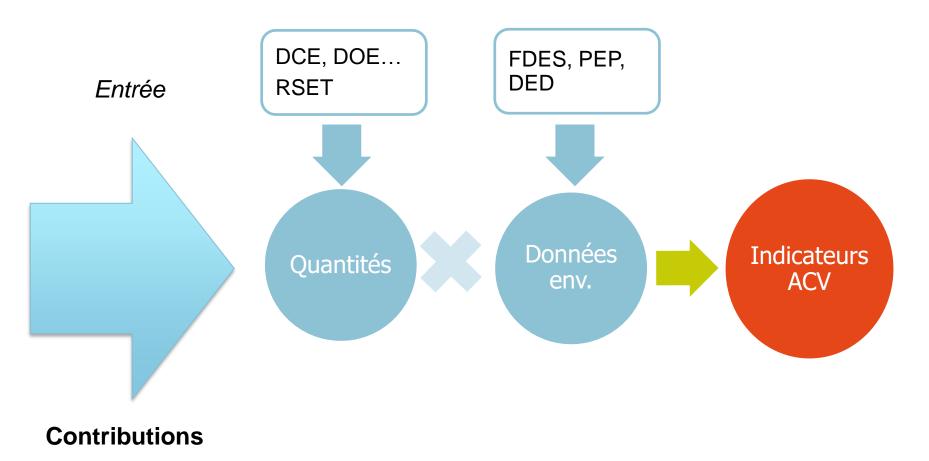
Consommation d'énergie

Chantier



Eau

Parcelle



LES CONTRIBUTIONS

LES DONNÉES ENVIRONNEMENTALES

Données conventionnelles

Entrée

Données environnementales de **services**: *transport*, *eau potable*, *eau usée*, *énergie* ...

=> *Etat*

FDES collective ou individuelle

PEP collective ou individuelle

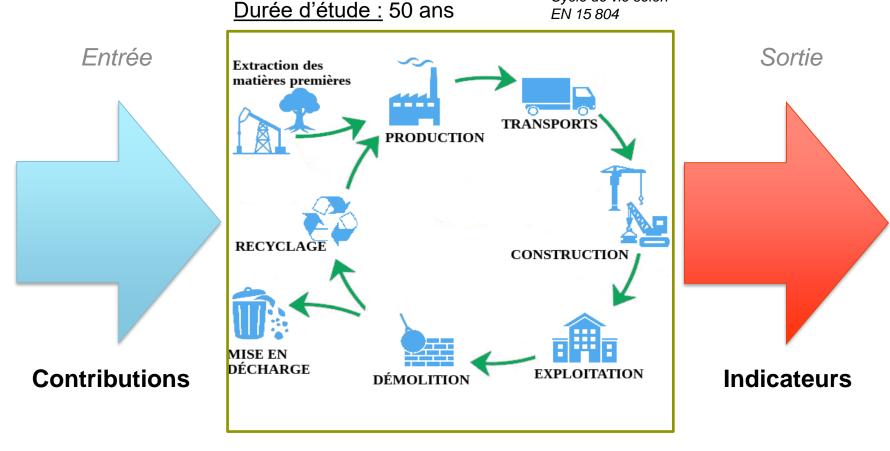
Configurateur

=> Fabricant ou syndicat

Donnée environnementale par défaut (DED)

Génériques et majorantes

=> Etat



CYCLE DE VIE

29/04/2021

Cycle de vie selon

LES INDICATEURS

- > Potentiel de réchauffement climatique (GWP)
- > Potentiel de destruction de la couche d'ozone stratosphérique (ODP)
- > Potentiel d'acidification du sol et de l'eau (AP)
- Potentiel d'eutrophisation (EP)
- > Potentiel de formation d'oxydants photochimiques de l'ozone troposphérique (POCP)
- Potentiel de dégradation abiotique des ressources pour les éléments (ADP_éléments)
- > Potentiel de dégradation abiotique des combustibles fossiles (ADP_combustibles fossiles)
- Pollution de l'air*
- Pollution de l'eau*

Indicateurs décrivant les impacts environnementaux

- ➤ Utilisation de l'énergie primaire renouvelable à l'exclusion des ressources d'énergie employées en tant que matière première
- > Utilisation de ressources énergétiques primaires renouvelables employées en tant que matière première
- ➤ Utilisation totale des ressources d'énergie primaire renouvelables (énergie primaire et ressources d'énergie primaire employées en tant que matières premières)*
- ➤ Utilisation de l'énergie primaire non renouvelable à l'exclusion des ressources d'énergie primaire employées en tant que matière première
- > Utilisation de ressources énergétiques primaires non renouvelables employées en tant que matière première
- ➤ Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire employées en tant que matières premières)*
- ➤ Utilisation totale des ressources d'énergie primaire (énergie primaire et ressources d'énergie primaire employées en tant que matières premières)*
- Utilisation de matières secondaires
- > Utilisation de combustibles secondaires renouvelables
- > Utilisation de combustibles secondaires non renouvelables
- Utilisation nette d'eau douce

Indicateurs décrivant l'utilisation des ressources

- Déchets dangereux éliminés
- Déchets non dangereux éliminés

Indicateurs décrivant les catégories de déchets

Composants destinés à la réutilisation

29/04/2021

- Matières pour le recyclage
- Matières pour la récupération d'énergie (à l'exception de l'incinération)
- Énergie fournie à l'extérieur

Indicateurs décrivant les flux sortants du système



Conférence de présentation de la RE2020

Sortie

Indicateurs

LES INDICATEURS

Potentiel de réchauffement climatique (GWP)

Les Indicateurs pour la RE2020

Constrcution [kg eq. CO₂/m²]

Impact sur le changement climatique associé aux composants : « composant » + « chantier »

Exigence

Cénergie

Impact sur le changement climatique associé aux composants : «énergie »

 Utilisation totale des ressources d'énergie primaire non renouvelables (énergie primaire et ressources d'énergie primaire employées en tant que matières premières)*

- ➤ Utilisation totale des ressources d'énergie primaire (énergie primaire et ressources d'énergie primaire employées en tant que matières premières)*
- Utilisation de matières secondaires
- Utilisation de combustibles secondaires renouvelables
- Utilisation de combustibles secondaires non renouvelables
- Utilisation nette d'eau douce

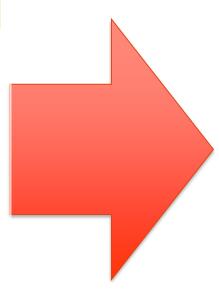
Indicateurs décrivant l'utilisation des ressources

- Déchets dangereux éliminés
- Déchets non dangereux éliminés

Indicateurs décrivant les catégories de déchets

- Composants destinés à la réutilisation
- Matières pour le recyclage
- Matières pour la récupération d'énergie (à l'exception de l'incinération)
- Énergie fournie à l'extérieur

Indicateurs décrivant les flux sortants du système



29/04/2021

Conférence de présentation de la RE2020

Indicateurs

LES INDICATEURS

Potentiel de réchauffement climatique (GWP) Les Indicateurs pour la RE2020 **IC**construction Impact sur le changement climatique associé aux composants: « composant » + « chantier » [kg eq. CO₂/m²] Exigence IC énergie Impact sur le changement climatique associé aux composants: «énergie » [kg eq. CO₂/m²] Ic_{bâtiment} = IC_{construction} + IC_{énergie} + IC_{eau} [kg eq. CO₂/m²] ndicatif Ic_{ded3à13} Impact des données environnementales par défaut dans le calcul de lc_{construction} [kg eq. CO₂/m²] StockC Quantité de carbone biogénique stocké dans le bâtiment [kg C/m²]

Sortie

Indicateurs

Matières pour le recyclage

29/04/2021

Matières pour la récupération d'énergie (à l'exception de l'incinération)

Energie fournie à l'extérieur Indicateurs décrivant les flux sortants du système

Conférence de présentation de la RE2020

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations
- 4. Points spécifiques

carbone

 $Ic_{construction}$ max = $Ic_{construction}$ maxmoyen × (1 + Micombles + Misurf) + Migéo + Miinfra + Mivrd + Mided

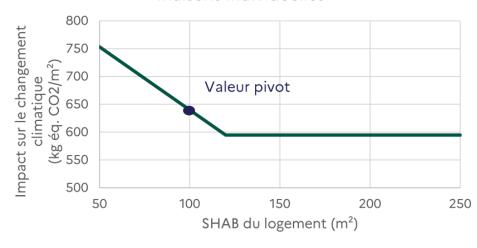
Exigence relative à un bâtiment moyen (« valeur pivot ») :

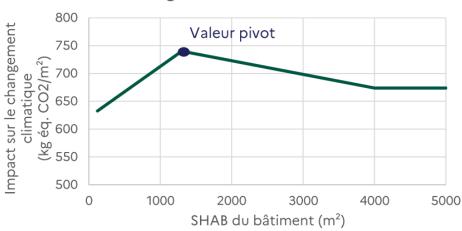
- ✓ Maison individuelle (MI) de 100 m² ...
- ✓ Bâtiment de logements 1300 m² ...
- ...: sans combles aménagés, sans sous-sol, avec des fondations superficielles, avec un garage en MI

Ic_{construction}max = Ic_{construction}maxmoyen × (1 + Micombles + Misurf) + Migéo + Miinfra + Mivrd + Mided

Modulation selon la présence de comble

 Revient à intégrer la Surface des combles aménagés dans la Surface de référence avec un facteur de 0,4




 $Ic_{construction}$ max = $Ic_{construction}$ maxmoyen × (1 + Micombles + Misurf) + Migéo + Miinfra + Mivrd + Mided

Modulation selon la surface du bâtiment

Valeur seuil après modulation par Misurf maisons individuelles

Valeur seuil après modulation par Misurf logements collectifs

Ic_{construction}_max = Ic_{construction}_maxmoyen × (1 + Micombles + Misurf) + Migéo + Miinfra + Mivrd + Mided

Modulation selon la zone géographique

✓ Pour tenir compte des dispositifs pour assurer le confort d'été dans les zones les plus chaudes

 $Ic_{construction}$ max = $Ic_{construction}$ maxmoyen × (1 + Micombles + Misurf) + Migéo + Miinfra + Mivrd + Mided

Modulation selon les impacts de l'infrastructure fondations, parkings, caves :

✓ L'impact de l'infrastructure (lot 2 de l'ACV) est comparé à une valeur de référence (40 kg_{éqC02}/m²) qui correspond à l'impact de fondations superficielles Le seuil est augmenté de l'écart entre ces 2 valeurs

NB: les garages (non enterrés) des maisons individuelles ne sont pas concernés

 $Ic_{construction} = Ic_{construction} = Ic_{construction} = Misurf + Misu$

Modulation selon les impacts des VRD: réseaux, parkings extérieurs :

✓ Même approche que pour l'infrastructure

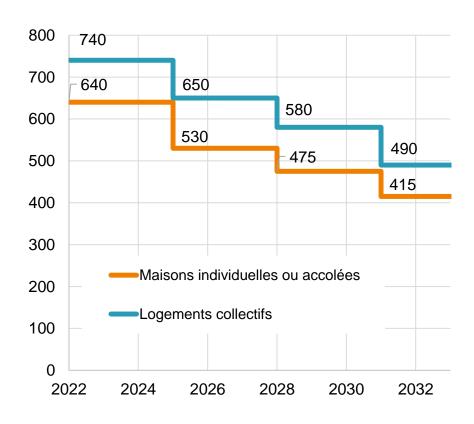
Modulation selon l'impact des données par défaut utilisées :

3 temps:

√ 2022 : augmentation du seuil

√ 2025 : neutralisation de la modulation

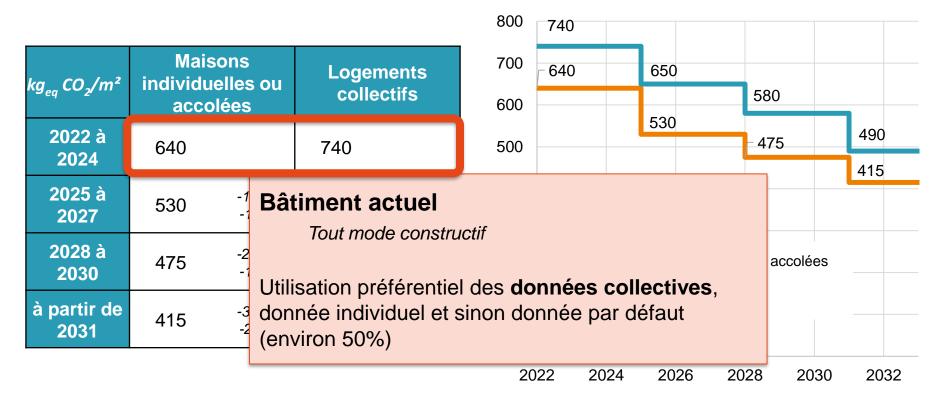
√ 2028 : abaissement du seuil



EXIGENCE

Ic _{Construction}_max

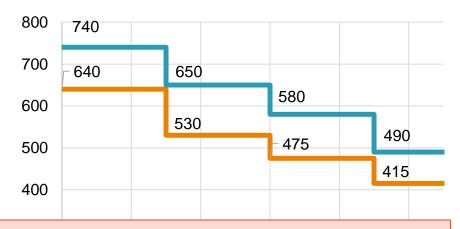
kg _{eq} CO ₂ /m²	Maisons individuelles ou accolées		Logements collectifs	
2022 à 2024	640		740	
2025 à 2027	530	-17% -110	650	-12% -90
2028 à 2030	475	-26% -165	580	-22% -160
à partir de 2031	415	-35% -225	490	-34% -250



carbone

EXIGENCE

Ic Construction_max



EXIGENCE

Ic Construction_max

kg _{eq} CO ₂ /m²	Maisons individuelles ou accolées		Logements collectifs	
2022 à 2024	640		740	
2025 à 2027	530	-17% -110	650	-12% -90
2028 à 2030	475	-26% -165	580	-22% -160
à partir de 2031	415	-35% <i>-</i> 225	490	-34% -250

Différents leviers pour arriver à ces résultats :

- Optimisation des données environnementales
- Structure bois
- Matériaux bas carbone en second œuvre
- Béton bas carbone

. .

PLAN

- 1. Objectifs
- 2. Méthodes et indicateurs
- 3. Exigences et modulations
- 4. Points spécifiques

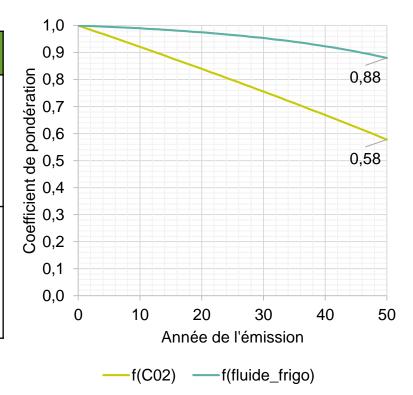
ACV DYNAMIQUE

Analyse du cycle de vie déclinée selon 2 approches

Approche « statique »

Le moment de l'émission de GES n'est pas considéré : on considère que tout a lieu aujourd'hui

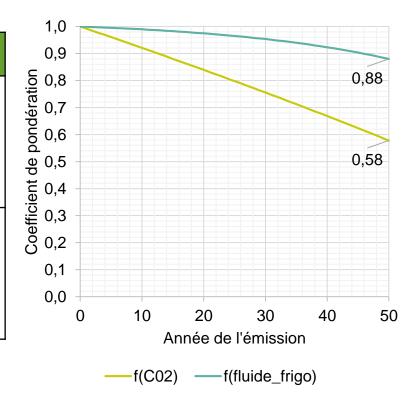
Une émission temporaire n'a pas d'impact. un stockage temporaire n'a pas d'impact



ACV DYNAMIQUE

Analyse du cycle de vie déclinée selon 2 approches

Approche « statique »	Approche « dynamique »		
Le moment de l'émission de GES n'est pas considéré : on considère que tout a lieu aujourd'hui	Plus une émission a lieu tôt plus son impact est fort		
Une émission temporaire n'a pas d'impact. un stockage temporaire n'a pas d'impact	Une émission temporaire augmente l'impact carbone. Un stockage temporaire diminue l'impact carbone.		



ACV DYNAMIQUE

Analyse du cycle de vie déclinée selon 2 approches

Approche « statique »	Approche « dynamique »
moment de l'émission de GE n'est pas conside e : on con idère que tont a lieu aujourd'in	Plus une émission a lieu tôt plus son impact est fort
Une épresion temperaire n'a pas conpact. un lockage temporaire la as d'impact	Une émission temporaire augmente l'impact carbone. Un stockage temporaire diminue l'impact carbone.

ÉVOLUTION PAR RAPPORT E+C-

... concernant la méthode d'évaluation

- Calcul des indicateurs pour chacune des phases du cycle de vie
- Calcul « dynamique » de l'impact sur le changement climatique
- Évolution de la prise en compte des bénéfices et charges liés à la valorisation en fin de vie
- Changement de surface de référence

... concernant les exigences

- Modification du périmètre: aménagements de la parcelle exclus (clôtures, adaptation du hors parkings)
- Modification des modulations relatives aux parkings
- Introduction de modulations relatives aux fondations, à la surface des bâtiments, à l'usage des données par défaut, à la zone géographique
- Modification des indicateurs faisant l'objet d'exigence

... concernant la sémantique

- «contributeurs» -> « contributions »
- « PCE » -> « composants »
- « MDEGD» -> « DED »

QUESTIONS?

- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

CONFORT D'ÉTÉ?

QUELLE SERA LA MÉTHODE D'ÉVALUATION?

- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

PLAN

- 1 Objectifs
- 2 Indicateurs
- 3 Exigences
- 4 Evolution par rapport à la RT2012

PLAN

- 1 Objectifs
- 2 Indicateurs
- 3 Exigences
- 4 Evolution par rapport à la RT2012

OBJECTIFS

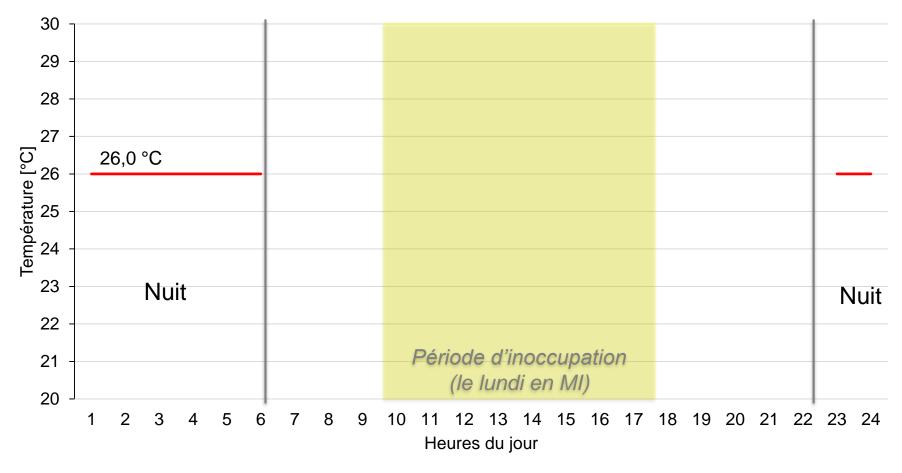
Améliorer la méthode

S'adapter au climat futur

Inciter aux solutions passives

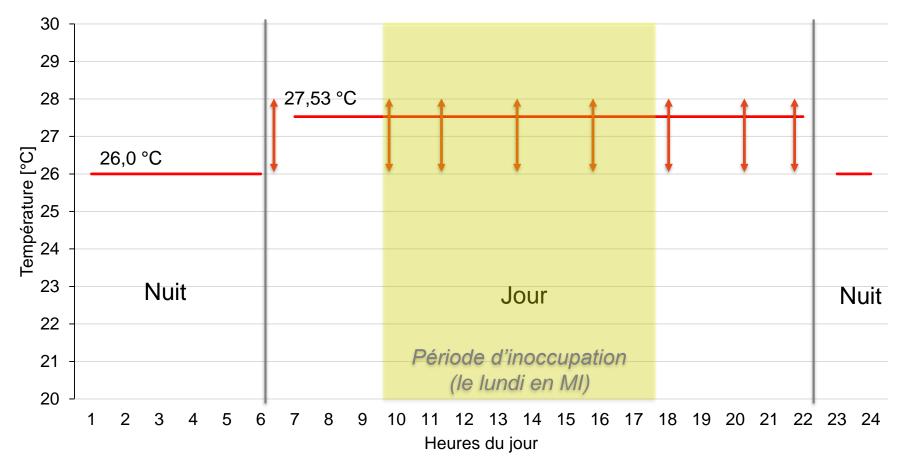
PLAN

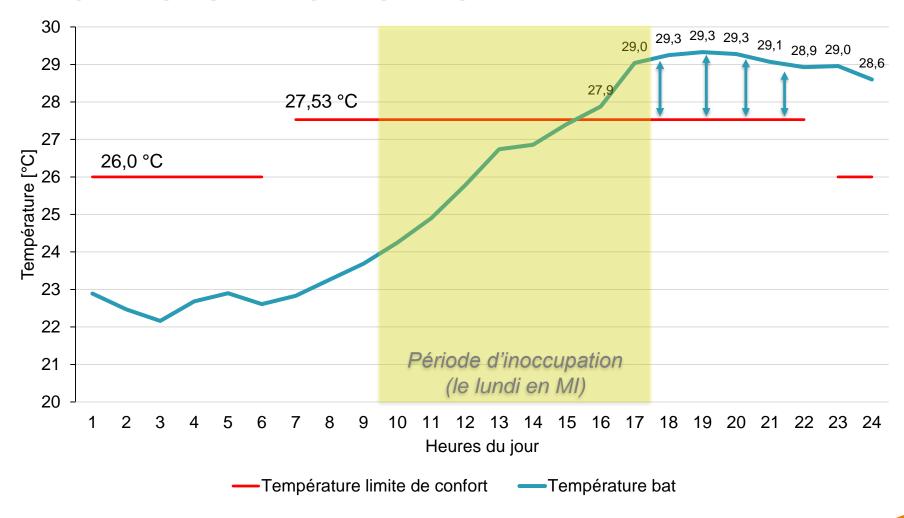
- 1 Objectifs
- 2 Indicateurs
- 3 Exigences
- 4 Evolution par rapport à la RT2012



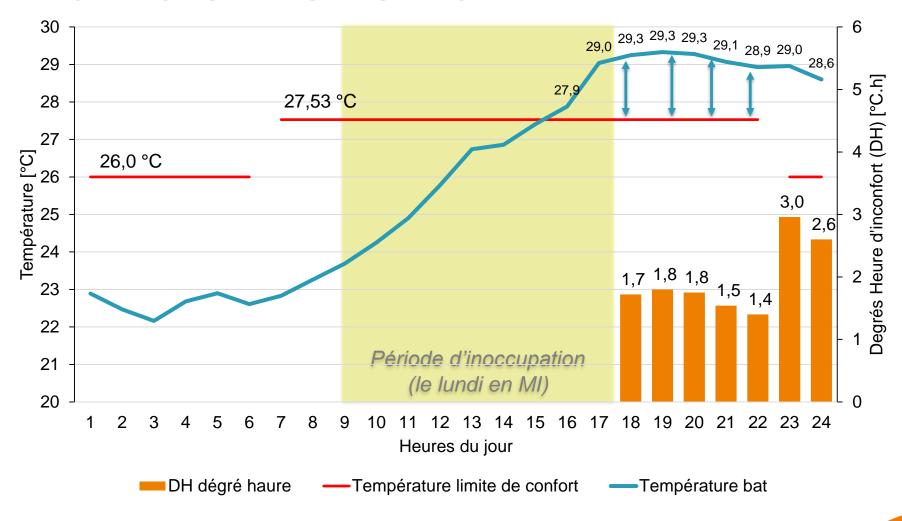
INDICATEURS

Degrés heure (DH)


—Température limite de confort

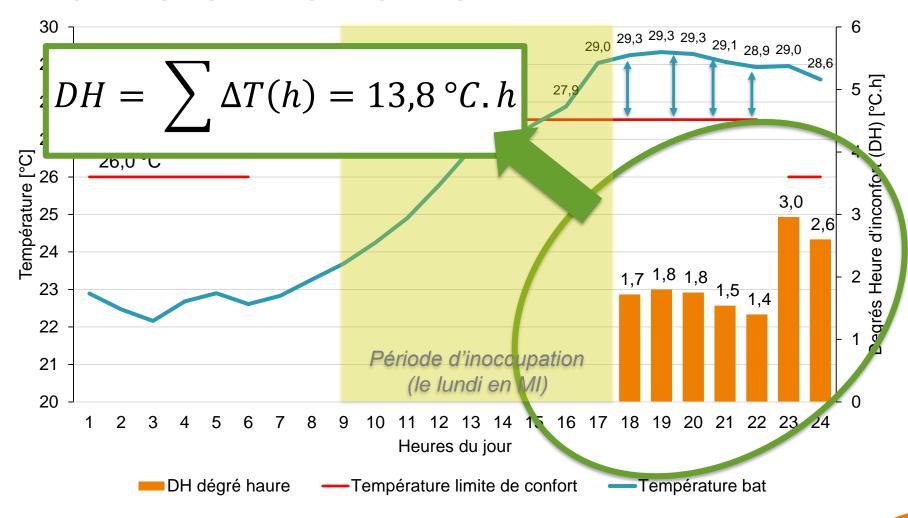


—Température limite de confort



29/04/2021

Conférence de présentation de la RE2020



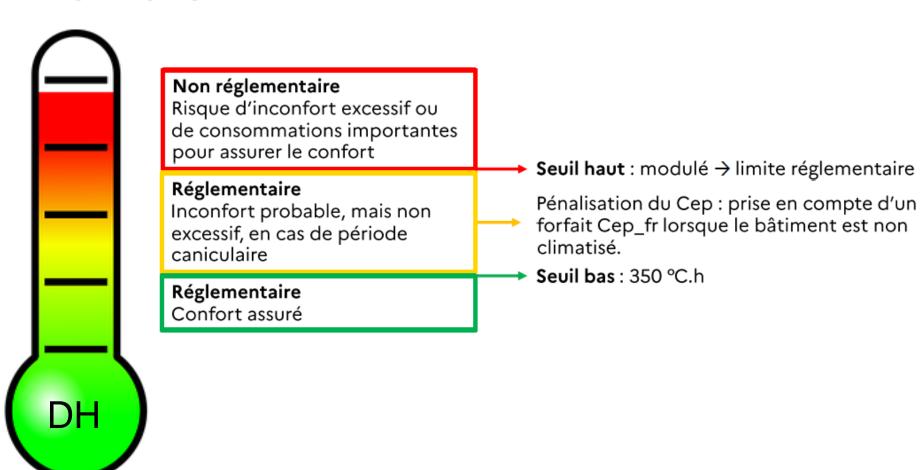
29/04/2021

Conférence de présentation de la RE2020

29/04/2021

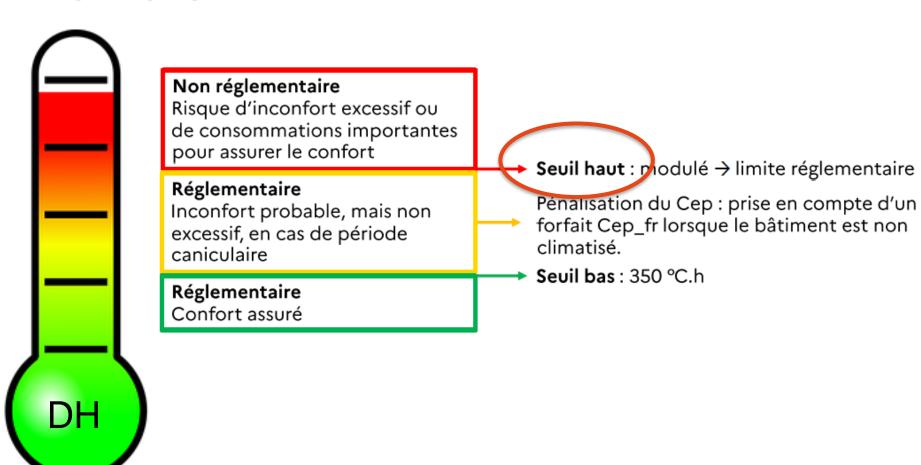
Conférence de présentation de la RE2020

Confort d'été



PLAN

- 1 Objectifs
- 2 Indicateurs
- 3 Exigences
- 4 Evolution par rapport à la RT2012



Seuil Haut

Catégorie 1 et catégorie 2

catégorie 2

Catégorie 2 :

Climatisé

- + Usage d'habitation
 - + BR2 ou BR3
 - + H2d ou H3
- + Altitude [0; 400m[

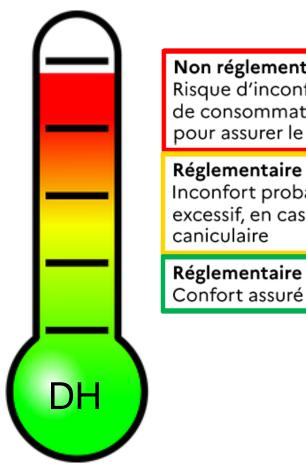
Seuil Haut

Maisons individuelles:

	Catégorie 1	Catégorie 2
DH_maxcat	1250	1850

Seuil Haut

Maisons individuelles:


	Catégorie 1	Catégorie 2
DH_maxcat	1250	1850

Logement collectif

	Catégorie 1, sauf parties de	Catégorie 1	
DH_maxcat	bâtiments climatisées en	climatisé, en zone	Catégorie 2
	zones H2d et H3	H2d et H3	
$Smoy_{lgt} \le 20 m^2$	1250	1600	2600
$20m^2 < Smoy_{lgt} \le 60 m^2$	1250	$1700 - 5 * Smoy_{lgt}$	$2850 - 12,5 * Smoy_{lgt}$
$Smoy_{lgt} > 60 m^2$	1250	1400	2100

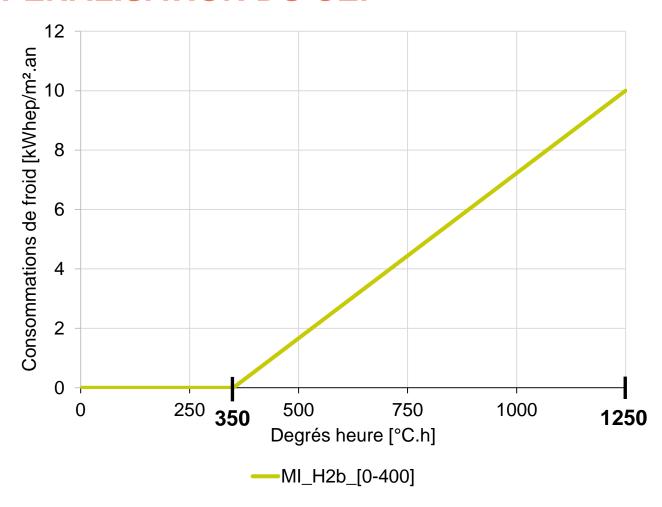
Non réglementaire

Risque d'inconfort excessif ou de consommations importantes pour assurer le confort

Réglementaire

Inconfort probable, mais non excessif, en cas de période caniculaire

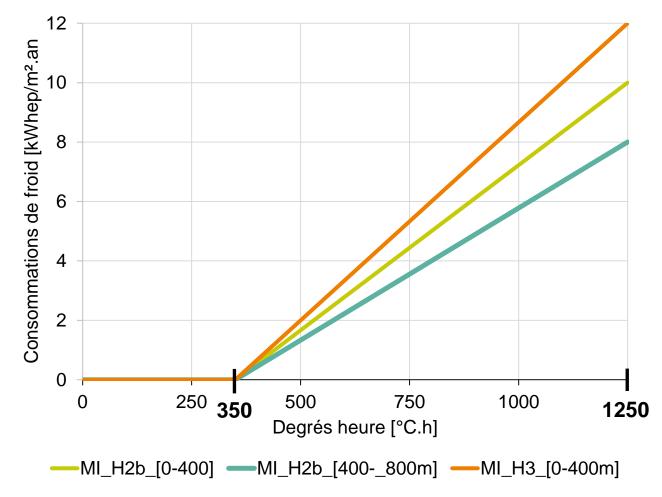
Réglementaire


Seuil haut : modulé -> limite réglementaire

Pénalisation du Cep : prise en compte d'un forfait Cep_fr lorsque le bâtiment est non climatisé.

Seuil bas: 350 °C h

PÉNALISATION DU CEP



PÉNALISATION DU CEP

Varie en fonction de :

- la typologie de bâtiment
- la zone climatique
- l'altitude

PLAN

- 1 Objectifs
- 2 Indicateurs
- 3 Exigences

29/04/2021

4 – Evolution par rapport à la RT2012

EVOLUTIONS PAR RAPPORT À LA RT2012

- Nouvel indicateur : Degrés heure d'inconfort
- > Seuil bas et seuil haut
- Pénalisation du Cep

EVOLUTIONS PAR RAPPORT À LA RT2012

- Nouvel indicateur : Degrés heure d'inconfort
- Seuil bas et seuil haut
- Pénalisation du Cep

- Scénarios météo conventionnels caniculaires
- Scénarios d'occupation conventionnels modifiés

EVOLUTIONS PAR RAPPORT À LA RT2012

Nouvel indicateur : Degrés heure d'inconfort

Scénarios météo conventionnels caniculaires

Scénarios d'occupation conventionnels modifiés

- Seuil bas et seuil haut
- Pénalisation du Cep

Distinction zone traversante/non traversante (logements collectifs)

QUESTIONS?

- pierrick.nussbaumer@cerema.fr
- antoine.turck@cerema.fr

Série de conférences sur le confort d'été

https://www.youtube.com/watch?v=DTx9KHN3DQA&list=PLfAtyWxP Oe_KTRxAUq6tNnII2UDr5yWeh

