

Mardi 06 décembre 2022

Quel système pour une rénovation performante?

Mardi 06 décembre 2022

Quels systèmes pour une rénovation performante?

Francis LACOUR

Habitant de Clairlieu

Membre fondateur du PROJET de CLAIRLIEU

et de l'Association « Clairlieu Eco Défi »

Formateur de l'organisme de formation « Clairlieu Eco Défi »

Directeur Général bénévole de la SCIC « Clairlieu Eco Rénovation Solidaire »

Membre fondateur de la Communauté d'Energie Renouvelable « Clairvolt »

Membre de l'Association « Technosolar »

Enseignant au Lycée des Métiers du Bâtiment et de l'Energie Emmanuel Héré à Laxou (54)

L'Association : « Clairlieu Eco Défi » https://clairlieuecodefi.fr/

L'Organisme de formation : « Clairlieu Eco Défi » https://clairlieuecodefi.fr/formations

La SCIC : « Clairlieu Eco Rénovation Solidaire » http://cersvillers.com

Les Pros du solaire : « Technosolar » http://www.technosolar.fr/

La Communauté d'Energie Renouvelable : « Clairvolt » http://.....

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

L' objectif:

à partir des différentes composantes des systèmes énergétiques :

Aider au choix d'une solution énergétique acceptée et performante

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

Partir de l'existant... et du début

➤ Un système énergétique est un ensemble de sources, de vecteurs et d 'usages [...]
C'est à la fois un système technique et un système social, soumis [...] à un état donné de la technologie, et à des acteurs ayant une culture particulière.

Partir de l'existant... et du début : Quelques principes qui en découlent :

- Le « système énergétique » fait partie intégrante de la rénovation globale et performante
- ➤ Il se conçoit « en même temps » que les autres phases de la rénovation

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

La méthode:

Approche technique vs Approche pragmatique

Approche technique:

- Etat des lieux / technique
- Dimensionnement / technique
- Calcul théorique
- Préconisations d'après calculs

Approche pragmatique:

- Etat des lieux
 énergétique »
- Problématiques relevées
- Souhaits des usagers
- Evolutions possibles

Approche statique et instantanée

Propositions d'éléments techniques

Approche dynamique et évolutive Propositions de solutions énergétiques

- relever l'existant du ou des systèmes existants
 - pour le chauffage
 - pour l'ECS
 - pour la ventilation
 - > pour le rafraîchissement
 - pour la régulation

- relever l'existant du ou des systèmes existants
 - pour le chauffage:
 - ✓ Energie(s) ?
 - ✓ Ventouse ou CF?
 - ✓ Age (approximatif)
 - ✓ Eventuellement puissance
 - ✓ Ça marche ; ça marche pas ?
 - ✓ Réglages actuels (température, plages…)

- relever l'existant du ou des systèmes existants
 - > pour l'ECS
 - ✓ Electrique ?
 - ✓ Thermodynamique ?
 - ✓ Solaire ?
 - ✓ Ballon associé chaudière ?
 - ✓ Volume ?
 - ✓ Suffisant ou non?

- > relever l'existant du ou des systèmes existants
 - pour la ventilation
 - √ Absence
 - ✓ Naturelle (bouches)
 - ✓ Extracteur
 - √ VMC (SF ou DF)
 - ✓ Autre

- relever l'existant du ou des systèmes existants
 - pour le rafraîchissement
 - ✓ Clim?
 - ✓ Autre ?
 - ✓ Comment ils font pendant la canicule ?
 - o pièce spécifique?
 - o gestion des locaux et des ouvrants ?
 - o autre ? (supermarché...)

- relever l'existant du ou des systèmes existants
 - pour la régulation
 - ✓ aquastat chaudière visible ?
 - √ thermostat?
 - ✓ sondes (ambiance, extérieure) ?
 - ✓ loi d'eau chrono-proportionnelle ?
 - ✓ régulation PID ?
 - ✓ gestion coordonnée sanitaire et thermique , (avec gestion inertie) ?

« Comprendre et savoir appliquer les solutions SEMPER »

2. Relever les problématiques soulevées

- > crépi qui se décolle
- ambiance humide ou odeur de moisissure
- moisissures
- noir au plafond
- > sensations de froid ou de courant d'air
- mauvaise répartition de la chaleur
- > absence de chauffage à tel endroit
- consommation trop élevée
- **>** ...

3. Intégrer les souhaits des habitants

4. Appréhender le rapport à l'énergie des habitants

- LE « consommateur d'énergie », unique, rationnel et cohérent n'existe pas !
- La demande des individus évolue au cours du temps
- même si les individus semblent rester marqués tout au long de leur vie par le contexte historicoénergétique dans lequel ils ont grandi. (G Brisepierre; ADEME; 12/2013)

Ce qui signifie:

- Que la demande des usagers évolue dans le temps!
- Qu'un outil de gestion des systèmes doit s'adapter aux usages d'habitation, et que ce n'est pas un outil à usage unique.

La méthode:

- · Utiliser une démarche pragmatique :
 - 1. Partir de l'existant
 - 2. Relever les problématiques soulevées
 - 3. Intégrer les souhaits des usagers
 - 4. Appréhender le rapport à l'énergie des occupants
 - 5. Déterminer une ou des solutions, et faire les propositions correspondantes

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

Ah oui, bien sûr! Facile!
Sauf que...comment on fait?
Comment on détermine une proposition?

Pour cela, j'ai besoin de savoir :

- √ ce qui est disponible
- ✓ ce que je garde
- √ ce que je veux à terme
- ✓ ce que je change (j'ajoute) pour que ça marche
- √ comment je peux décider sans faire d'erreur

Qu'est-ce qui est disponible ?

- pour le chauffage
- > pour l'ECS
- pour la ventilation
- pour le rafraîchissement
- pour la régulation

Qu'est-ce que je garde ?

. . .

. . .

Qu'est-ce que je veux à terme ?

Autrement dit : c'est quoi ma cible finale ?

Qu'est-ce que je veux à terme ?

Enveloppe

Systèmes

Budget

Souhaits

Choix

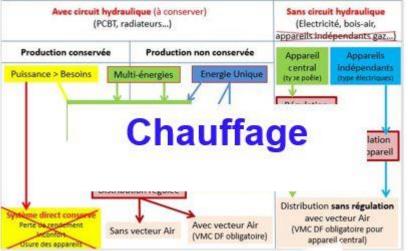
Choix

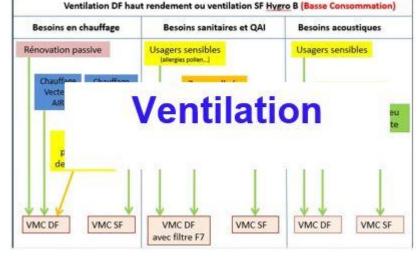
Lots?

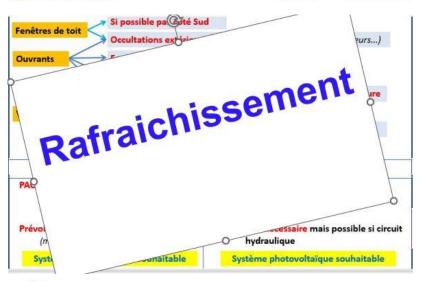
Etapes?

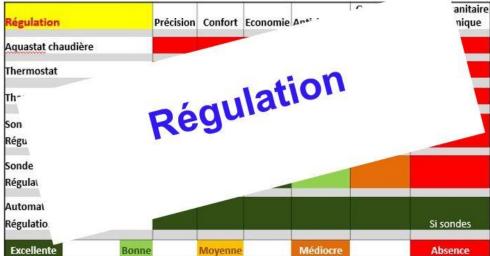
Ne pas compromettre une rénovation efficace et 100% EnR!

Ne pas compromettre une rénovation performante et globale!


Qu'est-ce que je change ou j'ajoute pour que ça marche ?



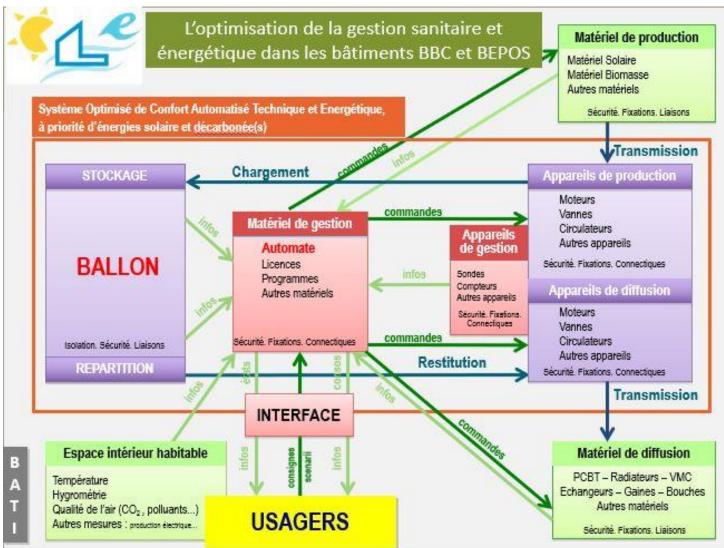



Les arbres d'aide à la décision

Des solutions!

Groupe de travail : des règles

- Prévoir une évolutivité
 - besoins
 - usages
 - énergies
- Conserver ce qui peut l'être et l'intégrer dans une démarche évolutive
- Lister des solutions



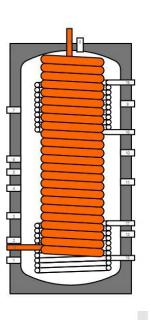
En maison individuelle, d'un point de vue fonctionnel, ça donne ça :

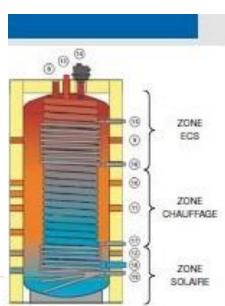
Et d'un point de vue pratique, ça donne ça :

LES « SEMPER »

Les « SEMPER »

- 17 solutions déjà existantes (testées et validées !)
 Matériels, schémas hydrauliques, réglages...
- Quelle que soit l'énergie de départ
- Avec les évolutions possibles
- Vers un 100% énergies renouvelables
- Avec du solaire thermique qui s'impose naturellement...





Ballon « Strat'O Sol Air » de CHAROT

Chauffage et production E.C.S. pour pavilion standard B.B.C. jusqu'à 5 personnes

- Modutarità : nombreux branchements hydrauliques disponibles
- Evolutivité: apports successits d'énergies décerbonées possibles sans modification.

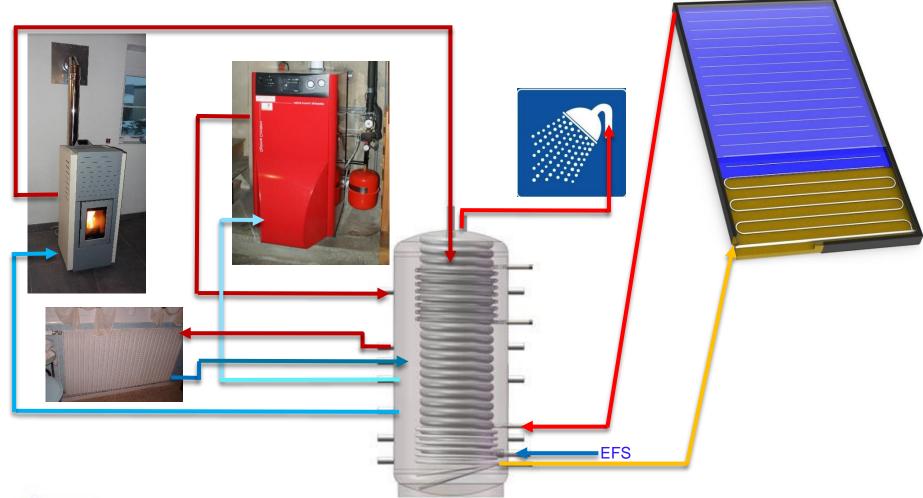
1 à 12 : Piquages primaires 26/54 F 13 : Départ ECS 33/42 F 14 : Appoint électrique (option)

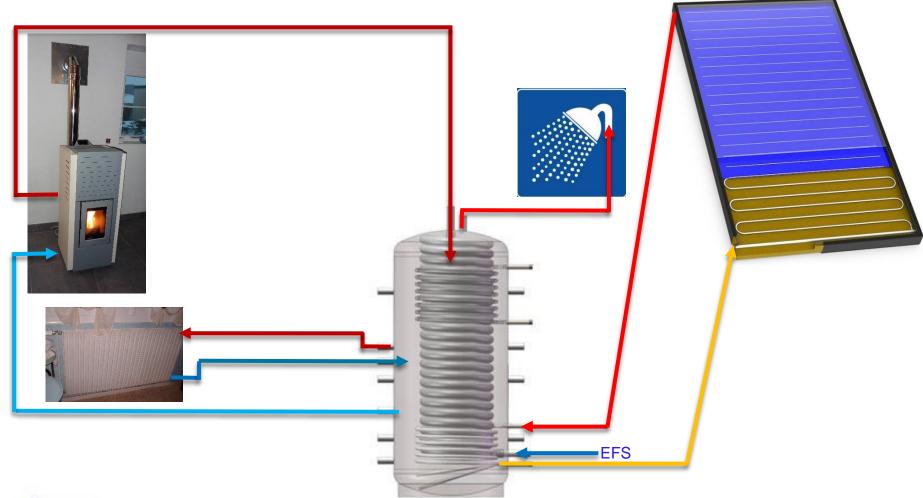
15-16 : Serpentin supérieur appoint chaudière

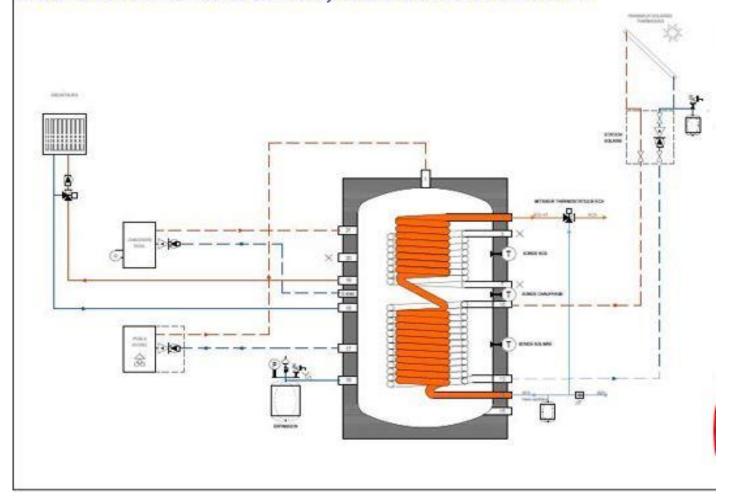
17-10 : Surporte inferior solute 10 : Eau frode 33/42 F



Conserver l'existant ? (pas toujours...)




Des solutions évolutives en conservant l'existant...


... jusqu'au 100 % énergies renouvelables!

Des solutions existantes, testées et décrites...

Approche par le système : une stratégie évolutive

« Prévoir le solaire, au service de la rénovation »

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

Des exemples avec du solaire, mesurés dans le programme SOLCOMBI 2 :

Maisons standard

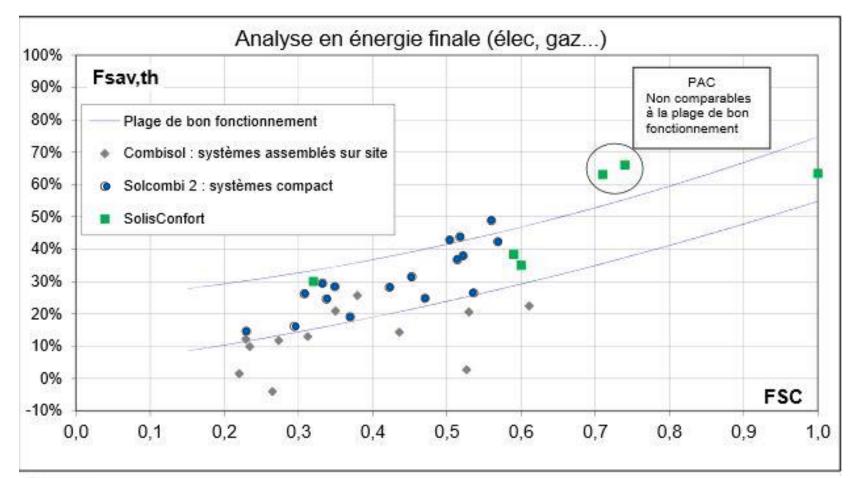
SSC 7 m² + Chaudière gaz condensation *intégrée* Banlieue Nancy

Economie > 40%

SSC 7 m² + Chaudière gaz condensation *externe*

Banlieue Nancy

Economie > 35 %

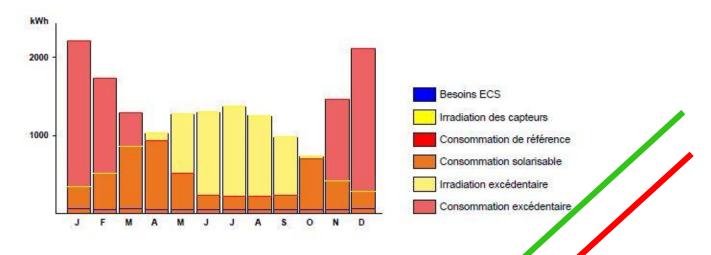


Résultats SolCombi 2 : il y a plus de 10 ans


Maisons rénovées :

Un petit SSC avec 3 capteurs...

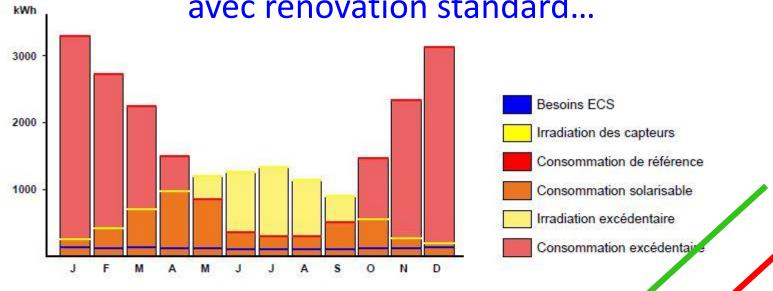
Appoint gaz existant Ajout poêle à granulés hydro



...à Toulouse

Résultats :

	Jan	Fév	Mar	Avr	Mai	Jui	Jul	Aou	Sep	Oct	Nov	Déc	Total
Irradiation sur les capteurs (kWh)	347	522	857	1035	1277	1302	1382	1251	984	733	414	286	10389
Besoins chauffage (kWh)	1597	1228	852	574	232	8	0	0	13	382	1003	1524	7412
Besoins bruts eau chaude (kWh)	61	55	58	54	54	49	49	49	50	55	57	61	652


Résultats	Situation Initiale (DPE 18°C)	Situation Finale à 20°	C Recommandations
Energie utilisée	Gaz naturel	Gaz naturel	
Consommation sans solaire (kWh)	8603	10931	
Consommation d'appoint (kWh)		6598	
Economie (kWh)	-0	4333	
Economie spécifique (kWh/m² capte	eur solaire)		Modifier l'inclinaison des capteur
Taux d'économie d'énergie (%)	10 25 00	39	

Le même... à Nancy, dans une maison avec rénovation standard...

Résultats	Situation Initiale (DPE 18°C)	Situation Finale à 18°C	Recommandations
Energie utilisée	Gaz naturel	Gaz naturel	
Consommation sans solaire (kWh)	18871	17166	
Consommation d'appoint (kWh)		12820	
Economie (kWh)		4346	
Economie spécifique (kWh/m² capte	ur solaire)	577	Modifier l'inclinaison des capteur
Taux d'économie d'énergie (%)		25	

100% EnR : c'est possible en rénovation ! ici solaire thermique (>50%) et granulés de bois

Les exemples du projet de Clairlieu avec la Société Coopérative d'Intérêt Collectif « Clairlieu Eco Rénovation Solidaire » (Villers-lès-Nancy)

Le projet de Clairlieu :

- ➤ Un projet issu d'habitants
- ➤ La création d'une Association, d'une SCIC et aujourd'hui d'une Communauté d'Energie Renouvelable
- ➤ Un travail collectif
 - > Une définition de la cible avec les habitants : BBC Effinergie Rénovation
 - > Une mission d'études : BET et Architecte
 - Une formation des habitants
 - -> acquisition d'une culture commune
- ➤ Un projet global :
 - ➤ Des cibles de Développement Durable
 - ➤ Une participation à la lutte contre le réchauffement climatique et contre le développement des GES

Clairlieu, c'est:

La plus grosse ZAC d'habitat social coopératif d'Europe des années 70...

Un lotissement de 1328 pavillons...

...quasi-identiques...

...et très énergivores :

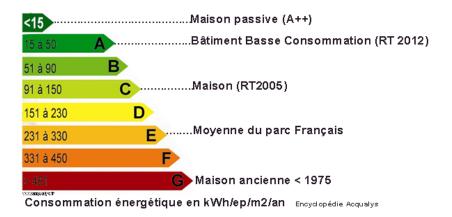
- 50 000 kWh en 1974
- 30 000 kWh en 2009
- Et demain ?...

Un ensemble pavillonnaire de maisons tout béton...

... véritables passoires énergétiques, qui vieillissent après 50 ans...

...et qu'on a décidé de rénover :

Des rénovations globales et performantes...



à facteur 10!

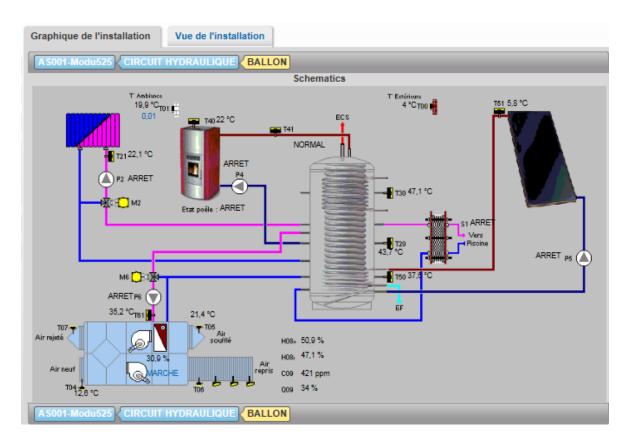
Avant <u>rénovation</u>: > 280 kWh_{ep}/m²/an

Après rénovation:

< 30 kWh_{ep}/m²/an réels pour ECS et chauffage

Un travail conséquent sur le bâti : Une énergie grise minimale

Une production d'énergie 100% renouvelable



Le solaire pour l'eau chaude et le chauffage Conçu dans un système énergétique, comme énergie principale...

Le solaire pour l'eau chaude et le chauffage

...pensé dès la conception, pour une intégration architecturale et paysagère qui en favorise l'acceptabilité

• • •

Le solaire pour l'eau chaude et le chauffage

...et optimisé dans son fonctionnement au sein des systèmes

Quelques résultats :

Moins d'une tonne d'appoint granulés à l'année (avec ECS)

- ✓ Pour plus de 130 m2 habitables
- ✓ Un bilan thermique à moins de 50 kWh_{ep}/m²/an, en zone H1b

Un confort optimum:

✓ Grâce à la gestion énergétique et sanitaire simultanées

Une qualité d'air irréprochable :

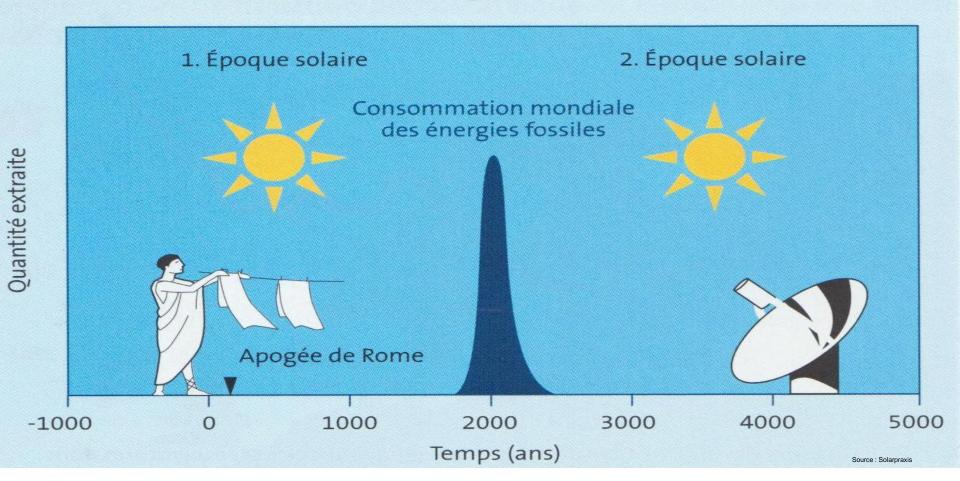
✓ Validée par Atmo GrandEst, et conforme à celle des ErP

Une connaissance de la consommation :

✓ En temps réel

Quels systèmes pour une rénovation performante?

Objectif
Système énergétique
Approche pragmatique
Synthèse et solutions
Exemples
Conclusion

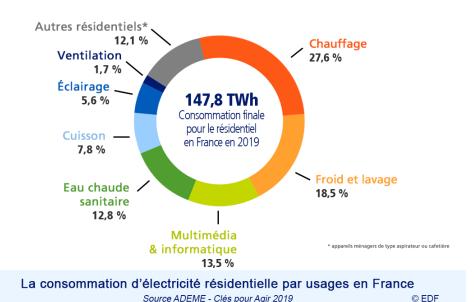

Juste un petit mot sur l'énergie...

Consommation des énergies fossiles dans le monde

CONSOMMATION ANNUELLE MONDIALE D'ÉNERGIE

...et sur l'électricité...

Pour ne pas prendre des vessies pour des lanternes...



Quelques chiffres en France...

473 TWh d'électricité en 2019 ...

148 TWh d'électricité pour le résidentiel

dont: 60 TWh pour le chauffage et l'ECS

© EDF

Question : combien de réacteurs supplémentaires pour passer en PAC ?

Quelques chiffres...

Environ: 3 millions de chaudières fioul en France
2 000 litres de consommation en moyenne
Soit environ...
60 TWh de chaleur

Environ : 10,5 millions de chaudières gaz en France (résidentiel) 16 500 kWh de consommation en moyenne

Soit environ...

170 TWh de chaleur

Quelques chiffres complémentaires...

En 2020: Chaleur renouvelable totale:

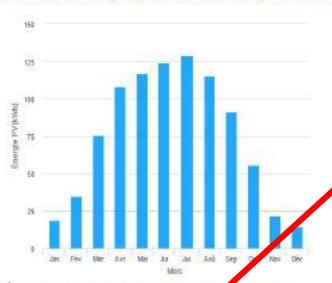
1,6% de la consommation finale

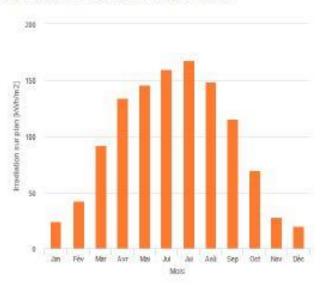
Dont: Solaire thermique:

1,24 TWh, soit 0,2% de la consommation finale

Le photovoltaïque : petit quizz...

Du coup, pourquoi pas une PAC avec du photovoltaïque ?




Pour 1 kWc installé à Nancy :

Production énergétique mensuelle du système PV fixe:

Irradiation mensuelle sur plan fixe:

Énergie PV et irradiation solaire prensuelle

Mois	E m	H(i)_m D_m			
Janvier	19.0	24.	3.5		
Février		72.1	6.5		
Mars	76.0	92.2	14.7		
Avril	108.1	134.2	19.3		
Mai	117.0	146.2	19.9		
Juin	124.5	159.8	11.4		
Juillet	129.0	167.6	12.6		
Août	115.4	148.6	13.0		
Septembre	91.5	115.5	7.4		
Octobre	56.0	69.6	6.4		
Novembry	21.7	7 1	2.1		
Décemble	14.7	1 .7	2.1		

E_m: Production dectrique moyenne mensuelle du système defini [kWh]. H(i)_m: Montait total mensuel moyen de l'irradiation globale reçue par metre carré sur les panneaux du système defini [kWh/m²].

SD_m: l'eviation standard de la production électrique mensuelle à cause de la variation interannuelle [kWh].

Quels systèmes pour une rénovation performante?

En résumé:

- Penser sa rénovation « Bâti » à la cible BBC a minima
- Penser les systèmes parallèlement,
 à la cible 100% EnR
- Prévoir du solaire thermique <u>dimensionné à la cible finale</u>, qui représentera à terme 50% de la chaleur
- Penser au ballon multi-énergies!

AVEC LE SOUTIEN DE

climaxion anticiper · économiser · valoriser

métropole **GrandNancy**

Je vous remercie

